Содержание

1	Основные положения S. Silbernagl, F. Lang	2
	Рост клетки и клеточная адаптация	2
		6
	Нарушения передачи внутриклеточных сигналов Передача сигнала	10
	Гибель клеток путем некроза	12
	Гибель клеток путем некроза	14
	,	16
	Развитие опухолевых клеток	18
	Эффекты, связанные с опухолями	
	Старение и продолжительность жизни	20
2	Температура, энергия S. Silbernagl	24
	Лихорадка	24
	Гипертермия, перегревание организма	26
	Гипотермия, переохлаждение организма	28
	Ожирение, нарушения питания	30
3	Кровь S. Silbernagl	32
	Общие сведения	32
	Эритроциты	34
	Эритропоэз, анемия	34
	Жизненный цикл эритроцитов: нарушения, компенсация, диагностика	36
	Мегалобластная анемия, обусловленная нарушениями синтеза ДНК	38
	Анемии, обусловленные нарушениями синтеза гемоглобина	40
	Железодефицитная анемия	42
	Гемолитические анемии	44
	Иммунная защита	46
	Воспаление	52
	Реакции гиперчувствительности (аллергия)	56
	Аутоиммунные болезни	60
	Иммунодефициты	62
	Гемостаз и его нарушения	64
	темостаз и его нарушения	04
4	Дыхание, кислотно-основное состояние F. Lang	70
	Общие сведения	70
	Вентиляция и перфузия легких	72
	Нарушения диффузии O ₂ и CO ₂	74
	Нарушения распределения	76
	Рестриктивные нарушения дыхания	78
	Обструктивные нарушения дыхания	80
	Эмфизема легких	82
	Отек легких	84
	Патофизиология регуляции дыхания	86
	Острый респираторный дистресс-синдром	88
	Гипоксия	90
	Гипероксия, оксидативный стресс	92
	Развитие алкалоза	94

	Развитие ацидоза Последствия ацидоза и алкалоза	96 98
5	Почки, водно-солевой баланс <i>F. Lang</i>	100
	Общие сведения	100
	Нарушения почечной экскреции	102
	Патофизиология почечных транспортных процессов	104
	Нарушения концентрации мочи	108
	Поликистозная болезнь почек	110
	Нарушения гломерулярной функции	112
	Нарушения избирательной проницаемости гломерулярного фильтра,	44.4
	нефротический синдром	114 116
	Интерстициальный нефрит	118
	Острая почечная недостаточность Хроническая почечная недостаточность	110
	Почечная гипертензия	124
	Заболевания почек во время беременности	126
	- Баоолевания почек во время обременности Гепаторенальный синдром	128
	Мочекаменная болезнь	130
	Нарушения водно-солевого баланса	132
	Нарушения баланса калия	134
	Нарушения баланса магния	136
	Нарушения баланса кальция	138
	Нарушения баланса фосфатов	140
	Патофизиология кости	142
6	Желудок, кишечник, печень S. Silbernagl	146
	Функция желудочно-кишечного тракта	146
	Пищевод	148
	Тошнота и рвота	152
	Гастрит (гастропатия)	154
	Язвенная болезнь	156
	Болезни оперированного желудка	160
	Диарея	162
	Нарушения пищеварения и всасывания	164
	Запор и (псевдо)непроходимость кишечника	168
	Хронические воспалительные заболевания кишечника	170
	Острый панкреатит	172
	Хронический панкреатит	174
	Муковисцидоз	176
	Желчнокаменная болезнь (холелитиаз)	178
	Желтуха	182
	Холестаз	182
	Портальная гипертензия	184
	Фиброз и цирроз печени	186 188
	Печеночная недостаточность (<i>см. также</i> с. 184)	100
7	Сердце и система кровообращения S. Silbernagl	190
	Общие сведения	190
	Фазы сердечного цикла	192
	Возникновение и проведение возбуждения в сердце	194

	Электрокардиограмма	198
	Нарушения ритма сердца	200
	Митральный стеноз	208
	Недостаточность митрального клапана	210
	Стеноз аортального клапана	212
	Недостаточность аортального клапана	214
	Пороки трехстворчатого клапана и клапана легочной артерии	216
	Циркуляторные шунты	216
	Артериальное давление и его измерение	220
	Артериальная гипертензия	222
	Легочная гипертензия	228
	Коронарное кровообращение	230
	Ишемическая болезнь сердца	232
	Инфаркт миокарда	236
	Сердечная недостаточность	238
	tri	230 244
	Болезни перикарда	
	Гемодинамический шок	246
	Отеки	250
	Атеросклероз	252
	Метаболический синдром	256
	Неатеросклеротическое поражение сосудов	258
	Болезни вен	258
_		
8	Метаболизм S. Silbernagl	260
	OCurre con return	260
	Общие сведения	
	Аминокислоты	260
	Нарушения метаболизма углеводов	262
		242
	Липидозы	262
	Нарушения метаболизма липопротеидов	264
	**	264 268
	Нарушения метаболизма липопротеидов	264 268 270
	Нарушения метаболизма липопротеидов Подагра	264 268
	Нарушения метаболизма липопротеидов Подагра Метаболизм железа, гемохроматозы	264 268 270
	Нарушения метаболизма липопротеидов Подагра Метаболизм железа, гемохроматозы Метаболизм меди, болезнь Вильсона	264 268 270 272
	Нарушения метаболизма липопротеидов Подагра Метаболизм железа, гемохроматозы Метаболизм меди, болезнь Вильсона Дефицит α_t -антитрипсина	264 268 270 272 272
	Нарушения метаболизма липопротеидов Подагра Метаболизм железа, гемохроматозы Метаболизм меди, болезнь Вильсона Дефицит α_1 -антитрипсина Диспротеинемии Синтез гема, порфирии	264 268 270 272 272 274 276
9	Нарушения метаболизма липопротеидов Подагра Метаболизм железа, гемохроматозы Метаболизм меди, болезнь Вильсона Дефицит α_t -антитрипсина Диспротеинемии	264 268 270 272 272 274
9	Нарушения метаболизма липопротеидов Подагра Метаболизм железа, гемохроматозы Метаболизм меди, болезнь Вильсона Дефицит сı-антитрипсина Диспротеинемии Синтез гема, порфирии	264 268 270 272 272 274 276
9	Нарушения метаболизма липопротеидов Подагра Метаболизм железа, гемохроматозы Метаболизм меди, болезнь Вильсона Дефицит с ₁ -антитрипсина Диспротеинемии Синтез гема, порфирии Гормоны F. Lang	264 268 270 272 272 274 276 278
9	Нарушения метаболизма липопротеидов Подагра Метаболизм железа, гемохроматозы Метаболизм меди, болезнь Вильсона Дефицит сц-антитрипсина Диспротеинемии Синтез гема, порфирии Гормоны F. Lang Общая характеристика гормонов Нарушения регуляторных контуров эндокринной системы	264 268 270 272 272 274 276 278 278 280
9	Нарушения метаболизма липопротеидов Подагра Метаболизм железа, гемохроматозы Метаболизм меди, болезнь Вильсона Дефицит сц-антитрипсина Диспротеинемии Синтез гема, порфирии Гормоны F. Lang Общая характеристика гормонов Нарушения регуляторных контуров эндокринной системы Антидиуретический гормон	264 268 270 272 272 274 276 278 278 280 282
9	Нарушения метаболизма липопротеидов Подагра Метаболизм железа, гемохроматозы Метаболизм меди, болезнь Вильсона Дефицит сц-антитрипсина Диспротеинемии Синтез гема, порфирии Гормоны F. Lang Общая характеристика гормонов Нарушения регуляторных контуров эндокринной системы Антидиуретический гормон Пролактин	264 268 270 272 272 274 276 278 278 280 282 282
9	Нарушения метаболизма липопротеидов Подагра Метаболизм железа, гемохроматозы Метаболизм меди, болезнь Вильсона Дефицит сц-антитрипсина Диспротеинемии Синтез гема, порфирии Гормоны F. Lang Общая характеристика гормонов Нарушения регуляторных контуров эндокринной системы Антидиуретический гормон Пролактин Соматотропин	264 268 270 272 274 276 278 278 280 282 282 282
9	Нарушения метаболизма липопротеидов Подагра Метаболизм железа, гемохроматозы Метаболизм меди, болезнь Вильсона Дефицит с,-антитрипсина Диспротеинемии Синтез гема, порфирии Гормоны F. Lang Общая характеристика гормонов Нарушения регуляторных контуров эндокринной системы Антидиуретический гормон Пролактин Соматотропин Гормоны коры надпочечников: дефекты ферментов синтеза	264 268 270 272 274 276 278 278 282 282 282 284 286
9	Нарушения метаболизма липопротеидов Подагра Метаболизм железа, гемохроматозы Метаболизм меди, болезнь Вильсона Дефицит с,-антитрипсина Диспротеинемии Синтез гема, порфирии Гормоны F. Lang Общая характеристика гормонов Нарушения регуляторных контуров эндокринной системы Антидиуретический гормон Пролактин Соматотропин Гормоны коры надпочечников: дефекты ферментов синтеза Гормоны коры надпочечников: причины нарушения секреции	264 268 270 272 274 276 278 278 282 282 282 284 286 288
9	Нарушения метаболизма липопротеидов Подагра Метаболизм железа, гемохроматозы Метаболизм меди, болезнь Вильсона Дефицит с ₁ -антитрипсина Диспротеинемии Синтез гема, порфирии Гормоны F. Lang Общая характеристика гормонов Нарушения регуляторных контуров эндокринной системы Антидиуретический гормон Пролактин Соматотропин Гормоны коры надпочечников: дефекты ферментов синтеза Гормоны коры надпочечников: причины нарушения секреции Избыток гормонов коры надпочечников: болезнь Кушинга	264 268 270 272 274 276 278 278 282 282 284 286 288 290
9	Нарушения метаболизма липопротеидов Подагра Метаболизм железа, гемохроматозы Метаболизм меди, болезнь Вильсона Дефицит сւ,-антитрипсина Диспротеинемии Синтез гема, порфирии Гормоны F. Lang Общая характеристика гормонов Нарушения регуляторных контуров эндокринной системы Антидиуретический гормон Пролактин Соматотропин Гормоны коры надпочечников: дефекты ферментов синтеза Гормоны коры надпочечников: причины нарушения секреции Избыток гормонов коры надпочечников: болезнь Кушинга Дефицит гормонов коры надпочечников: болезнь Аддисона	264 268 270 272 274 276 278 278 280 282 282 284 286 288 290 292
9	Нарушения метаболизма липопротеидов Подагра Метаболизм железа, гемохроматозы Метаболизм меди, болезнь Вильсона Дефицит сւ,-антитрипсина Диспротеинемии Синтез гема, порфирии Гормоны F. Lang Общая характеристика гормонов Нарушения регуляторных контуров эндокринной системы Антидиуретический гормон Пролактин Соматотропин Гормоны коры надпочечников: дефекты ферментов синтеза Гормоны коры надпочечников: причины нарушения секреции Избыток гормонов коры надпочечников: болезнь Кушинга Дефицит гормонов коры надпочечников: болезнь Аддисона Причины и проявления избытка и дефицита андрогенов	264 268 270 272 274 276 278 278 280 282 282 284 286 288 290 292 294
9	Нарушения метаболизма липопротеидов Подагра Метаболизм железа, гемохроматозы Метаболизм меди, болезнь Вильсона Дефицит сւ,-антитрипсина Диспротеинемии Синтез гема, порфирии Гормоны F. Lang Общая характеристика гормонов Нарушения регуляторных контуров эндокринной системы Антидиуретический гормон Пролактин Соматотропин Гормоны коры надпочечников: дефекты ферментов синтеза Гормоны коры надпочечников: причины нарушения секреции Избыток гормонов коры надпочечников: болезнь Кушинга Дефицит гормонов коры надпочечников: болезнь Аддисона	264 268 270 272 274 276 278 278 280 282 282 284 286 288 290 292
9	Нарушения метаболизма липопротеидов Подагра Метаболизм железа, гемохроматозы Метаболизм меди, болезнь Вильсона Дефицит сւ,-антитрипсина Диспротеинемии Синтез гема, порфирии Гормоны F. Lang Общая характеристика гормонов Нарушения регуляторных контуров эндокринной системы Антидиуретический гормон Пролактин Соматотропин Гормоны коры надпочечников: дефекты ферментов синтеза Гормоны коры надпочечников: причины нарушения секреции Избыток гормонов коры надпочечников: болезнь Кушинга Дефицит гормонов коры надпочечников: болезнь Аддисона Причины и проявления избытка и дефицита андрогенов	264 268 270 272 274 276 278 278 280 282 282 284 286 288 290 292 294
9	Нарушения метаболизма липопротеидов Подагра Метаболизм железа, гемохроматозы Метаболизм меди, болезнь Вильсона Дефицит сւ,-антитрипсина Диспротеинемии Синтез гема, порфирии Гормоны F. Lang Общая характеристика гормонов Нарушения регуляторных контуров эндокринной системы Антидиуретический гормон Пролактин Соматотропин Гормоны коры надпочечников: дефекты ферментов синтеза Гормоны коры надпочечников: причины нарушения секреции Избыток гормонов коры надпочечников: болезнь Кушинга Дефицит гормонов коры надпочечников: болезнь Аддисона Причины и проявления избытка и дефицита андрогенов Секреция женских половых гормонов	264 268 270 272 274 276 278 278 280 282 282 284 286 288 290 292 294 296
9	Нарушения метаболизма липопротеидов Подагра Метаболизм железа, гемохроматозы Метаболизм меди, болезнь Вильсона Дефицит сւ,-антитрипсина Диспротеинемии Синтез гема, порфирии Гормоны F. Lang Общая характеристика гормонов Нарушения регуляторных контуров эндокринной системы Антидиуретический гормон Пролактин Соматотропин Гормоны коры надпочечников: дефекты ферментов синтеза Гормоны коры надпочечников: причины нарушения секреции Избыток гормонов коры надпочечников: болезнь Кушинга Дефицит гормонов коры надпочечников: болезнь Аддисона Причины и проявления избытка и дефицита андрогенов Секреция женских половых гормонов Эффекты женских половых гормонов	264 268 270 272 274 276 278 278 280 282 282 284 286 288 290 292 294 296 298

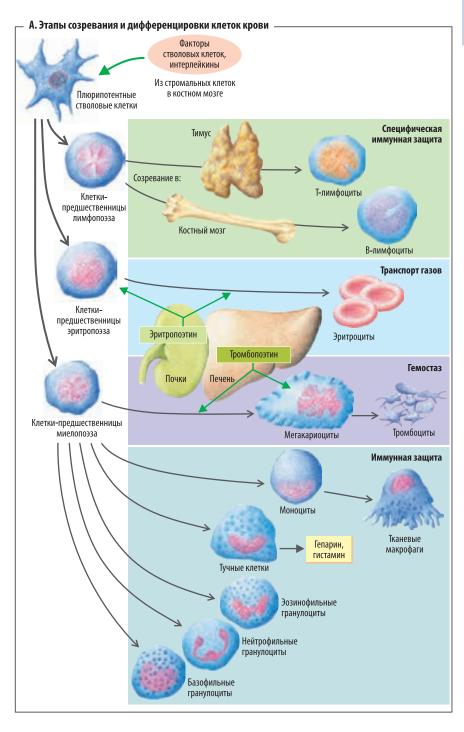
Метаболические изменения и симптомы при гипотиреозе	30
Причины сахарного диабета	300
Ранние проявления гипоинсулинизма (сахарного диабета)	31
Поздние осложнения длительной гипергликемии (сахарного диабета)	31
Гиперинсулинизм, гипогликемия	31
Гистамин, брадикинин и серотонин	31
Эйкозаноиды	31
Нервно-мышечная и сенсорная система <i>F. Lang</i>	32
Общие сведения	32
Патофизиология нейронов	32
Демиелинизация	32
Нарушения нервно-мышечной передачи	32
Поражения двигательных единиц и мышц	32
Поражения нисходящих двигательных путей	33
Поражения базальных ядер	33
Поражения мозжечка	33
Нарушения сенсорной системы	34
Боль	34
Болезни оптического аппарата глаза	34
Болезни сетчатки	34
Зрительный тракт и обработка визуальной информации	34
Нарушения слуха	35
Вестибулярная система, нистагм	35
Обоняние, вкус	35
Нарушения автономной нервной системы	35
Поражения гипоталамуса	35
Электроэнцефалограмма	35
Эпилепсия	36
Нарушения сна	36
Сознание	36
Афазия	36
Нарушения памяти	36
Болезнь Альцгеймера, деменция	37
Депрессия	37
Шизофрения	37
Зависимость, пристрастие	37
Спинномозговая жидкость, гематоэнцефалический барьер	37
Давление спинномозговой жидкости, отек мозга	38
Нарушения мозгового кровообращения, инсульт	38
Литература	38
Предметный указатель	3

304

Метаболические изменения и симптомы при гипертиреозе

3 Кровь S. Silbernagl

Общие сведения


Объем циркулирующей крови (ОЦК) коррелирует с массой тела (без учета жировой прослойки) (таблица внизу) и в среднем составляет 3,6 л у женщин и 4,5 л у мужчин. Основными функциями крови являются транспортная (перенос O_2 , CO_2 , питательных веществ, продуктов метаболизма, витаминов, электролитов и др.), терморегуляционная (согревание или охлаждение тела), сигнализационная (перенос гормонов), поддержание кислотно-основного баланса организма, а также защита от чужеродных веществ и микроорганизмов. В этих процессах участвуют **клетки крови** (→A и http://www. nachmaster.ru/remont_stiralnyh_mashin/). Эритроциты отвечают за транспорт O_2 и CO_2 , а также за поддержание нормального рН крови. Нейтрофильные гранулоциты (нейтрофилы), служащие разновидностью лейкоцитов, участвуют в реакциях неспецифической иммунной защиты; моноциты и лимфоциты — в специфических иммунных реакциях. Тромбоциты необходимы для обеспечения гемостаза. Отношение объема клеточных элементов крови к общему объему крови называется гематокритом (Hct) (с. 35. →A). Величина гематокрита более чем на 99 % определяется количеством эритроцитов в крови.

Жидкая часть крови, называемая плазмой, содержит электролиты, нутриенты, продукты метаболизма, витамины, газы и белки (см. таблицу). Белки плазмы выполняют такие функции, как участие в реакциях гуморального иммунитета, поддержание коллоидного осмотического (онкотического) давления крови (которое обеспечивает поддержание постоянства объема крови), транспорт водонерастворимых веществ и защита различных соединений от их разрушения в крови, а также их выведение из организма почками (например, гем). Связывание белков крови с малыми молекулами снижает осмотическую силу последних, препятствует приобретению ими антигенных свойств (с. 56) в виде гаптенов. Связывание гормонов, лекарственных препаратов и токсинов с белками

плазмы уменьшает их биологическое, терапевтическое или токсическое действие, но в то же время предотвращает быстрое выведение этих веществ из организма. Наконец, многочисленные белки плазмы участвуют в процессах свертывания крови и фибринолиза. При свертывании крови из плазмы расходуется фибриноген. в результате образуется сыворотка.

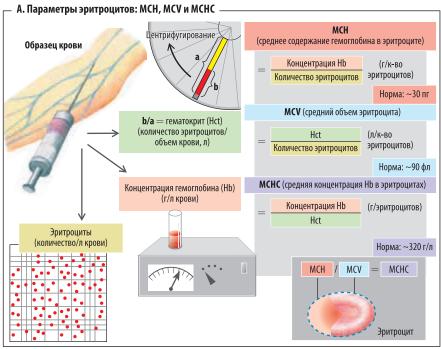
Образование клеток крови (→А). Органы кроветворения, т. е. красный костный мозг у взрослых, селезенка и печень у плода, содержат полипотентные стволовые клетки, которые под влиянием гемопоэтических факторов роста (см. далее) дифференцируются в клетки-предшественницы миелоидного, эритроидного и лимфоидного рядов. Воспроизводство этих стволовых клеток происходит таким образом, что их запасы сохраняются в течение всей жизни (с. 2). Лимфоциты, развивающиеся из клеток-предшественниц лимфопоэза, должны пройти дальнейшее созревание (частично в тимусе, частично в костном мозге), после чего они дифференцируются в селезенке и лимфатических узлах (лимфолоэз). Все остальные клетки-предшественницы делятся и созревают до последних стадий в костном мозге (миелопоэз) и только после этого выходят из костного мозга в кровь (→А). Среди прочих в гемопоэзе участвует два гормона: эритропоэтин (секретируемый почками), который регулирует пролиферацию клеток-предшественниц эритроцитов и их созревание (→А и с. 36). и тромбопоэтин (секретируемый печенью), который необходим для образования мегакариоцитов и тромбоцитов (→А). Образование клеток крови в костном мозге также регулируют другие, паракринно действующие факторы. Учитывая их влияние на культуры клеток, эти факторы иногда называют колониестимулирующими (КСФ). К другим факторам роста стволовых клеток относятся фактор стволовых клеток (или «стальной» фактор, или лиганд c-kit), а также лиганд flt3 (FL). Они запускают выделение ряда синергично действующих факторов, среди которых можно назвать КСФ и интерлейкины (IL-3, IL-6, IL-11, IL-12). Их активность подавляется TGF-β и TNF-α.

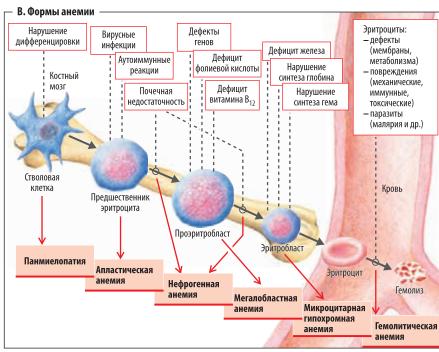
Периферическая кровь	Объем крови, л	(o*) 0,041 · κr + 1,53	(♀) 0,047 · кг + 0,86
	Гематокрит (количество клеток в 1л/объем крови, л)	(o') 0,40-0,54	(9) 0,37–0,47
Эритроциты	Количество, $\cdot 10^{12}$ /л (= 10^6 /мкл)	(o*) 4,6-6,2	(9) 4,2-5,4
	Гемоглобин, г/л	(o*) 140–180	(♀) 120–160
Лейкоциты	Количество, · 10 ⁹ /л (= 10 ³ /мкл)	3—11 (из которых 63 % гранулоциты, 31 % лимфоциты, 6 % моноциты)	
Тромбоциты	Количество, · 10 ⁹ /л (= 10 ³ /мкл)	(o*) 170–360	(9) 180-400
Белки плазмы	Количество, г/л	66-85 (из которых 55-	-64 % альбумин)

3 Кровь

Эритроциты (красные кровяные клетки) образуются в костном мозге из клеток-предшественниц эритропоэза, содержащих ядра (→В и с. 33, →А). В кровеносное русло они выходят уже безъядерными с дискоидной формой и не содержащими митохондрий. В капиллярах эритроциты способны деформироваться, что существенно облегчает их прохождение по микроциркуляторному руслу и обеспечивает обмен веществ и газов с окружающими тканями. В эритроцитах, недавно вышедших их костного мозга, в течение последующих 1–2 дней еще сохраняются органеллы. Эти клетки называются ретикулоцитами. Среди эритроцитов, продолжительность жизни которых составляет в среднем 110—120 дней, доля ретикулоцитов обычно 1–2 %.

Эритроциты содержат большое количество гемоглобина (Hb). Его средняя концентрация в эритроците (MCH) в норме составляет 300—360 г/л эритроцитов (→A). Поскольку нормальный эритроцит имеет объем (MCV) 80—100 фл, он содержит 26—35 пг гемоглобина (MCH).


Большое количество гемоглобина значительно повышает внутриклеточную осмоляльность эритроцита, и для того чтобы предотвратить поступление в него воды в соответствии с законами осмоса, внутриклеточная концентрация ионов в эритроците должна быть ниже таковой в плазме. Это достигается благодаря уникальному ферменту Na^+/K^+ - $AT\Phi ase$, работа которого требует $AT\Phi$, образующегося в результате анаэробного гликолиза (т. к. в зрелых эритроцитах отсутствуют митохондрии). Регуляция объема эритроцита осуществляется с помощью чувствительных к изменению объема ионных переносчиков, способных уменьшать в нем концентрацию K+ и CI-. При снижении синтеза АТФ или повреждении мембраны эритроцитов они набухают, а продолжительность их жизни укорачивается (преждевременный гемолиз).


Эритроциты регулярно выходят из артериол в пульпе селезенки и достигают малых пор в синусах селезенки. В этих порах старые и патологически ломкие эритроциты отделяются от общей массы эритроцитов и разрушаются. Их фрагменты фагоцитируются макрофагами в селезенке, печени, костном мозге и других органах и затем разрушаются (внесосудистый гемолиз в ретикулоэндотелиальной системе, точнее — в мононуклеарной фагоцитарной системе; с. 48]. Высвобождающийся гем разрушается с образованием билирубина (с. 182), а высвобождающееся железо используется вновь. При внутрисосудистом гемолизе высвобождаемый гемоглобин в определенном количестве связывается с гаптоглобином (с. 42). Это способствует уменьшению клубочковой фильтрации гемоглобина и его элиминации (т. е. уменьшает степень гемоглобинурии).

Эритропоэз, анемия

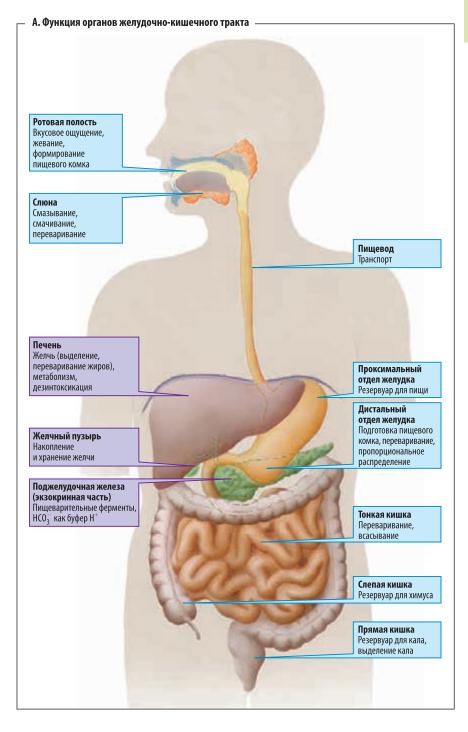
Термином «анемия» обозначают уменьшение количества эритроцитов, гемоглобина (основной показатель для анемии) и/или гематокрита при нормальном, как правило, общем объеме крови. Непосредственно после острой массивной кровопотери, при дегидратации или гипергидратации диагноз анемии можно ставить только после восстановления ОЦК. С учетом параметров эритроцитов (MCV и MCH; →A) анемии классифицируют в зависимости от объема эритроцитов на микроцитарные, нормоцитарные и макроцитарные; в зависимости от соотношения концентрации гемоглобина к количеству эритроцитов — на гипохромные, нормохромные и гиперхромные. Патогенетическая классификация анемий отражает нарушение отдельных этапов эритропоэза, а также продолжительность жизни эритроцитов, циркулирующих в крови (гемолитическая анемия; →В). Кроме того, анемия может развиться в результате острой или хронической кровопотери.

Расстройства эритропоэза (→В) возникают при: 1) нарушении или отсутствии дифференцировки плюрипотентных гемопоэтических стволовых клеток (апластическая анемия при панмиелопатии или остром миелобластном лейкозе); 2) преходящем (при вирусных инфекциях) или постоянном уменьшении только клеток-предшественниц эритропоэза (изолированная апластическая анемия) вследствие образования аутоантител против эритропоэтина или белков мембраны клеток-предшественниц эритропоэза: 3) дефиците эритропоэтина при патологии почек (так называемая почечная анемия); 4) хроническом воспалении или опухолях, которые активируют помимо прочего интерлейкины, подавляющие эритропоэз (вторичная анемия); 5) нарушениях дифференцировки клеток (неэффективный эритропоэз), причиной которых помимо генетических дефектов может быть дефицит фолатов или витамина В₁₂ (мегалобластная анемия; с. 38); 6) нарушениях синтеза гемоглобина (микроцитарная гипохромная анемия: с. 40).

6

Функция желудочно-кишечного тракта

Для того чтобы пища могла восполнить субстратные и энергетические потребности организма, ее необходимо проглотить, обработать, расщепить на составные компоненты (пищеварение) и усвоить (всасывание в кишечнике). Твердая пища пережевывается зубами и одновременно, с каждым укусом смешивается со слюной, выделяемой слюнными железами. Слюна содержит муцин (смазывающее вещество), антитела и α-амилазу, расщепляющую полисахариды. Функция пищевода состоит в быстром перемещении пищи из глотки в желудок. Нижний сфинктер пищевода на время открывается, но не допускает обратный заброс в пищевод потенциально вредного для пищевода желудочного сока. Проксимальный отдел желудка обеспечивает прежде всего хранение пищи, принятой во время еды. За счет сокращения мышц его стенки пищевой комок перемещается в дистальный отдел желудка, где подвергается обработке (дальнейшему расшеплению и эмульгированию). Желудочный сок и пепсин обеспечивают денатурацию и расшепление белков, а липазы начинают расщеплять жиры. Еще одна функция дистального отдела желудка — порционное распределение химуса. Кроме того, дистальный отдел желудка секретирует внутренний фактор, необходимый для всасывания кобаламинов (витамин В12).


Расщепление компонентов пищи завершается в тонкой кишке. Осуществляется оно ферментами поджелудочной железы и слизистой оболочки тонкой кишки. Для нейтрализации кислого химуса необходимы ионы HCO_3^- панкреатического сока. Для переваривания жиров дополнительно требуются соли желчных кислот. Они содержатся в желчи. Продукты пищеварения (моносахариды, аминокислоты, дипептиды, моноглицериды и свободные желчные кислоты), а также вода, минеральные элементы и витамины всасываются в тонкой кишке.

Продукты выделения (например, билирубин) вместе с желчью, секретируемой печенью, попадают в кал. Печень также выполняет ряд дополнительных метаболических функций: она служит промежуточным пунктом практически для всех веществ, всосавшихся в тонкой кишке, и способна *обезвреживать* чужеродные вещества и конечные продукты метаболизма, обеспечивая их последующее выведение из организма.

Толстая кишка — это последний пункт всасывания воды и ионов. Она заселена бактериями (кишечной флорой), играющими важную физиологическую роль. Толстая кишка, особенно слепая и прямая, также служит резервуаром для каловых масс, благодаря чему дефекация происходит относительно редко, несмотря на частый прием пищи.

В стенке пищевода, желудка и кишки находится два нервных сплетения. С их помощью контролируется моторика и секреция. Это происходит посредством местных рефлексов и регулирующих сигналов со стороны ЦНС, передаваемых через вегетативную нервную систему и висцеральные афферентные нервы. Кроме того, ЖКТ секретирует ряд пептидных гормонов и медиаторов, участвующих в контроле и регуляции деятельности ЖКТ и его добавочных желез.

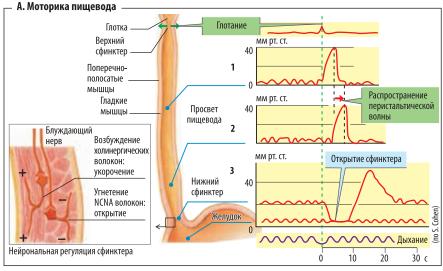
Внутренняя поверхность (площадь которой составляет приблизительно 100м2) ЖКТ имеет множество неспецифических и специфических механизмов защиты от патогенных организмов. Начиная с ротовой полости, такие компоненты слюны, как муцин, иммуноглобулин A (IqA) и лизоцим, препятствуют размножению попавших микроорганизмов. Соляная кислота и пепсины обладают бактерицидным свойством, а пейеровы бляшки ЖКТ являются его собственной иммунологически активной лимфоидной тканью. Специальные *М-клетки* («микроскладчатые клетки») слизистой оболочки передают антигены, находящиеся в просвете кишки, в пейеровы бляшки, которые в ответ на контакт с ними синтезируют IgA (пероральная иммунизация в норме или сенсибилизация как проявление патологического ответа). В эпителии кишки IqA соединяется с секреторным компонентом, зашишающим его от воздействия пишеварительных ферментов. Защитные механизмы кишечника распознают нормальную флору кишечника, что защищает ее от влияния иммунного ответа. Макрофаги в стенке кишки и синусоидах печени (купферовские клетки) формируют еще один барьер на пути патогенных организмов.

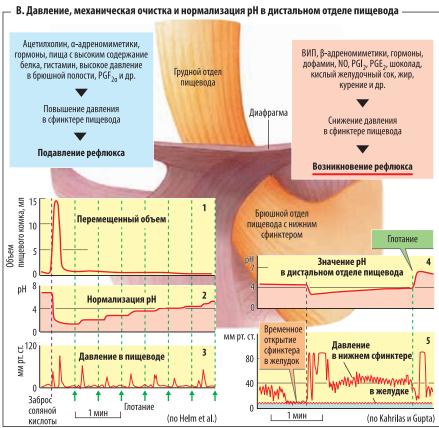
Мускулатура верхней трети стенки пищевода представлена скелетными и гладкими мышцами. При глотании (проглатывании) рефлекторно открывается верхний сфинктер пищевода, первичная перистальтическая рефлекторная волна продвигает пищевой комок в пищевод. При этом пищевод расширяется, что способствует возникновению последующих (вторичных) перистальтических волн. Этот процесс продолжается до тех пор, пока пищевой комок не попадет в желудок. В начале акта глотания под влиянием ваговагального рефлекса открывается нижний сфинктер пищевода. Этот рецептивно-релаксационный рефлекс действует при участии тормозных нехолинергических неадренергических (NCNA) ней-

Моторику пищевода, например распространение перистальтической волны, обычно оценивают путем измерения давления в различных сегментах пищевода (+A, 1, 2). В покое давление на уровне нижнего сфинктера составляет приблизительно 20–25 мм рт. ст. Во время рецептивной релаксации давление снижается до нескольких миллиметров ртутного столба, в основном на уровне проксимального отдела желудка (+A, 3), свидетельствуя об открытии сфинктера.

Нижний сфинктер пищевода, так же как и верхний, обычно закрыт. Этот барьер, препятствующий рефлюксу вредного для пищевода желудочного сока (с пепсином и HCI), усиливается при увеличении давления на уровне сфинктера ($\rightarrow B$), например. под воздействием ацетилхолина, высвобождающегося из ганглионарных клеток мышечного сплетения; адреномиметиков; гормонов, например гастрина (препятствует возникновению рефлюкса во время переваривания пищи в желудке), мотилина (препятствует возникновению рефлюкса между приемами пищи), соматостатина и вещества Р; паракринных влияний (гистамин, PGF_{2a}); пищи, богатой белками, или под действием высокого внутрибрюшного давления (обусловленного сокращением мышц живота. ожирением, асцитом). Это давление будет препятствовать открытию сфинктера, но при условии, что часть нижнего сфинктера пищевода длиной 3-4 см будет находиться в брюшной полости. В результате давление сфинктера возрастает (за счет сдавливания снаружи) пропорционально внутрибрюшному давлению. Более того, правая и левая ножки диафрагмы охватывают нижний сфинктер пищевода по типу ножниц, соответственно, он автоматически закрывается во время сокращения диафрагмы. Нормальное состояние диафрагмально-пищеводной связки (→Е, 1) и острый угол Гиса между терминальным отделом пищевода и желудком также играют важную роль в предотвращении гастроэзофагеального рефлюкса во время глотания.

Возникновению рефлюкса способствуют факторы, снижающие сфинктерное давление. К ним относятся вазоактивный интестинальный пептид (ВИП) и АТФ, медиаторы тормозных NCNA-нейронов, а также дофамин и β-адреномиметики, такие гормоны, как секретин, холецистокинин, прогестерон и глюкозозависимый инсулинотропный полипептид (раньше его называли гастроингибиторный пептид), паракринные вещества (NO, PGI₂, PGE₂), прогестерон во время беременности, жирная пища и многие другие.


Случаи рефлюкса желудочного сока происходят ежедневно и являются физиологическими. Рефлюкс возникает либо при неожиданном надавливании на полный желудок, либо во время глотания (при этом сфинктер открывается на несколько секунд) (→В, 5, слрава), либо в период временного открытия сфинктера (→В, 5, слева), он длится не более чем полминуты и инициируется значительным растяжением стенки желудка, а не актом глотания. Такое временное открытие сфинктера, вероятно, является частью выталкивающего рефлекса, обеспечивающего удаление из желудка проглоченного воздуха и СО₂. О патологическом рефлюксе свидетельствует выраженное снижение значения рН в дистальном отделе пищевода (→В, 4).


Существует три механизма защиты слизистой оболочки пищевода от последствий рефлюкса.

Механическая очистка, т. е. быстрое выталкивание попавшего в пищевод желудочного содержимого обратно в желудок за счет рефлекторного перистальтического сокращения пищевода. Объем рефлюкса, равный 15 мл, за исключением небольшого остаточного количества желудочного содержимого, в норме остается в пищеводе только в течение 5–10 с (→В, 1).

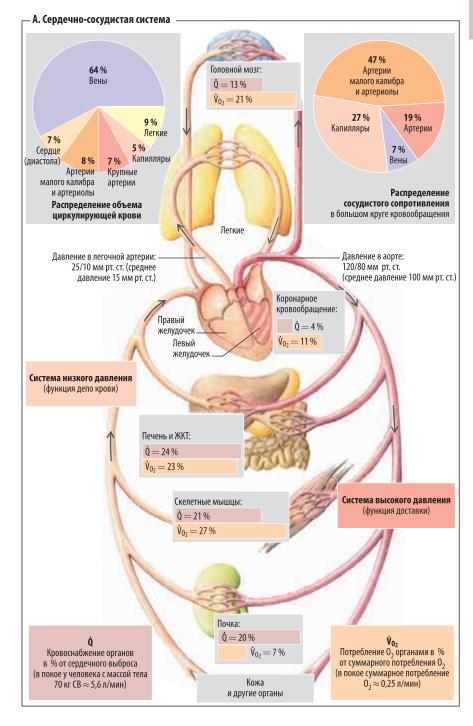
Нормализация значения рН. Значение рН желудочного сока, оставшегося после механической очистки, остается низким. Оно повышается постепенно, шаг за шагом (→В, 2) с каждым актом глотания (→В, 3) благодаря тому, что проглатываемая слюна служит буфером и увеличивает значение рН остаточного объема рефлюкса. Скорость нормализации значения рН зависит от количества и буферной емкости слюны.

Барьерные свойства эпителиальной выстилки (→Е, справа) особенно плотным является роговой слой (состоящий примерно из 10 слоев клеток), расположенный налюминальной поверхности. Он в значительной мере препятствует проникновению опасных компонентов желудочного сока (ионов Н+, пепсина, а иногда и солей желчных кислот). Кроме того, так же как в слизистой оболочке желудка (с. 156), ионы Н+, проникшие

Общие сведения

Левый желудочек сердца прокачивает кровь через артерии большого круга кровообращения в капилляры всего организма. Затем кровь по венам возвращается в сердце, после чего правым желудочком прокачивается через малый круг кровообращения и возвращается в левые отделы сердца (+A).

Общий объем крови составляет 4,5-5,5 л (около 7 % безжировой массы тела; с. 32), из которых примерно 80 % находятся в так называемой системе сосудов низкого давления, т. е. в венах, правых отделах сердца и сосудах малого круга кровообращения (→А, слева). Вследствие высокой растяжимости и большой емкости система сосудов низкого давления служит депо крови. В случае увеличения нормального объема крови (например, после гемотрансфузии) более 98 % введенного объема перемещаются в сосуды низкого давления и менее 2 % — в сосуды высокого давления. И наоборот, при уменьшении объема крови снижается наполнение только системы сосудов низкого давления. При нормальном состоянии сердца и легких адекватной мерой оценки ОЦК является центральное венозное давление, в норме равное 40-120 мм вод. ст.


Сердечный выброс (СВ) — это произведение частоты сердечных сокращений (ЧСС) и ударного объема (УО). В покое он составляет примерно **5,6 л/мин** (около 70 сокращений сердца в минуту умножают на 0,08 л ударного выброса). Более точным считается сердечный индекс, равный в среднем 3,4 л/мин на 1 м² площади поверхности тела. При увеличении ЧСС или величины УО может возрастать СВ во много раз.

СВ распределяется между органами, расположенными параллельно в большом круге кровообращения (*А; значения параметра Q). Интенсивность кровоснабжения органа, с одной стороны, определяется его функцией, а с другой — его текущими потребностями. Прежде всего обеспечивается адекватное кровоснабжение головного мозга (приблизительно 13 % СВ в покое), т. к. он не только жизненно важен, но и особенно чувствителен к дефициту кислорода — погибшие нервные клетки обычно не востанавливаются (с. 2). Кровоток по коронарным артериям сердечной мышцы также должен быть достаточным (в покое он составляет около 4 % СВ; с. 230), поскольку нарушение насосной функции сердца чре-

вато недостаточностью кровообращения в целом. Почки получают около 20-25 % CB. Указанный процент сильно зависит от массы почек (составляющей лишь 0,5 % массы тела) и необходим для выполнения ими гомеостатирующей и экскреторной функций. В случае угрозы развития гемодинамического шока (с. 246) кровоснабжение почек может временно уменьшаться с целью обеспечить адекватный приток крови к сердцу и головному мозгу. При выраженной физической нагрузке скелетные мышцы могут получать до ³/₄ CB (который при этом также возрастает). Во время приема пищи в ЖКТ поступает относительно большая часть СВ. Очевидно, что эти две группы органов не могут одновременно кровоснабжаться с максимальной интенсивностью. Кровоток в коже (около 10 % СВ в покое) служит прежде всего для отведения тепла. По этой причине он возрастает по мере увеличения теплообразования (при физической нагрузке) и/или при температуры окружающей среды (с. 24), но с другой стороны, может снижаться в пользу кровоснабжения жизненно важных органов (бледность кожи при шоке; с. 246).

Весь объем СВ протекает через малый круг кровообращения, поскольку он последовательно связан с большим кругом (→А). По легочным артериям кровь с низким содержанием кислорода (венозная) попадает в легкие, где насыщается кислородом (артериализуется). Дополнительно небольшое количество артериализованной крови из большого круга кровообращения попадает в легкие по бронхиальным артериям, обеспечивающим кровоснабжение самой ткани легких. В последующем вся эта артериализованная кровь по легочным венам оттекает в левое предсердие.

Сопротивление кровотоку в сосудах малого круга кровообращения составляет лишь небольшую часть общего периферического сопротивления сосудов (ОПС). По этой причине правому желудочку необходимо создавать в легочных артериях намного меньшее среднее давление (около 15 мм рт. ст., или 2 кПа) по сравнению с давлением, которое левый желудочек должен создать в аорте (100 мм рт. ст., или 13,3 кПа). В большом круге кровообращения основное сопротивление току крови оказывают артерии мелкого калибра и артериолы (+А, вверху справа), поэтому их называют резистивными сосудами.

Фазы сердечного цикла

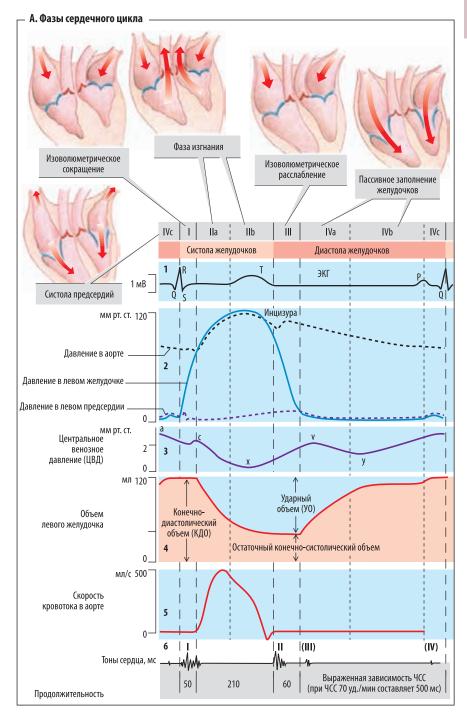
В покое ЧСС составляет около 70 уд./мин. Таким образом, менее чем за 1 с последовательно сменяются четыре периода желудочкового цикла (+А): в систоле выделяют изо(волю)метрический период (I) и периодизгнания (II), в диастоле — периодизо(волю)метрического расслабления (III) и период заполнения (IV). В конце диастолы происходит сокращение предсердий. Этим периодам механической активности сердца предшествует электрическое возбуждение соответственно желудочков и предсердий.

Клапаны сердца определяют направление тока крови в сердце, т. е. из предсердий в желудочки (IV период) и из желудочков соответственно в аорту и легочные артерии (II период). Во время I и II периодов все клапаны закрыты. Открытие и закрытие клапанов определяются направлением градиента давления по обе их стороны.

Сердечный цикл. К концу диастолы (период IVc) потенциал действия, генерируемый синусовым узлом, достигает мышц предсердий (зубец Р на ЭКГ; →А, 1), предсердия сокращаются, и сразу после этого стимулируются желудочки (комплекс QRS на ЭКГ). Давление в желудочках начинает возрастать, и как только оно превысит давление в предсердиях, предсердно-желудочковые (трехстворчатый и митральный) клапаны закрываются. Этот момент соответствует концу диастолы. В покое конечно-диастолический объем (КДО) желудочка в среднем равен 120 мл (→А, 4) или 70 мл/м² плошади поверхности тела.

Затемвозникаетсистола. Начинается она с изо(волю)метрического периода (І период). Этот период соответствует сокращению миокарда желудочков без изменения объема полостей желудочков (все клапаны закрыты [изо(волю)метрическое сокращение; первый тон сердца]; → A, 6), давление в желудочках быстро возрастает. Давление в левом желудочке превысит давление в аорте, когда оно станет равным примерно 80 мм рт. ст. (10,7 кПа), в то время как давление в правом желудочке превысит таковое в легочной артерии, когда достигнет 10 мм рт. ст. В этот момент открываются полулунные (аортальный и легочный) клапаны (→ A, 2).

Так начинается **период изгнания** (II период), во время которого давление в левом желудочке и аорте достигает максимального значения 120 мм рт. ст. (16 кПа). Большая часть УО быстро изгоняется в раннюю фазу (IIa; →A, 4), при этом скорость кровотока в аорте достигает своего максимума (→A, 5). Затем давление в желудочках начинает снижаться (остав-


шаяся часть УО изгоняется медленнее, IIb), пока наконец не опустится ниже давления в аорте и легочной артерии. В этот момент полулунные клапаны закрываются (*II тон сердца*). В среднем УО равен 80 мл (47 мл/м² площади поверхности тела), поэтому *фракция выброса* (УО/КДО) в покое равна 0,67. Таким образом, в конце систолы в желудочках остается объем, приблизительно равный 40 мл (конечно-систолический объем [КСО]; → А, 4).

За систолой следует диастола. Она начинается с периода изо(волю) метрического расслабления (III период). Одновременно вновь заполняются предсердия. Их заполнению во многом способствует присасывающий эффект. Он создается благодаря тому, что в период изгнания плоскость расположения клапанов опускается (мгновенное увеличение объема предсердий). Этот момент соответствует снижению центрального венозного давления (ЦВД) с точки с до точки х на кривой ЦВД (→A, 3). Давление в желудочках быстро уменьшается (→A, 2) при одновременном увеличении давления в предсердиях (приток крови: волна v на кривой ЦВД). В результате створки трехстворчатого и митрального клапанов вновь открываются.

Начинается период заполнения (IV период). Кровь быстро поступает из предсердий в желудочки (падение давления на кривой ЦВД, соответствующее точке у) в результате чего при нормальной ЧСС они заполняются на 80 % всего лишь за ¹/₄ времени диастолы (фаза быстрого заполнения [IVa]; →A, 4). Затем скорость заполнения уменьшается (IVb; α-волна на кривой ЦВД; →A, 2, 3). При нормальной ЧСС вклад систолы предсердий в заполнение желудочков составляет около 15 %. При большей ЧСС сердечный цикл укорачивается, особенно уменьшается время диастолы, в результате чего предсердный вклад в заполнение желудочков становится более важным.

III и IV тоны сердца (соответственно возникают изза притока крови и сокращения предсердий в раннюю диастолу) в норме выслушиваются у детей. У взрослых они являются патологическими (с. 211).

В результате периодической деятельности сердца формируется **пульсовая волна**, распространяющаяся по артериям со *скоростью пульсовой волны* (по аорте со скоростью 3–5 м/с, по лучевой артерии — 5–10 м/с), намного превышающей *скорость кровотока* (в аорте максимальная скорость кровотока составляет 1 м/с). Скорость распространения пульсовой волны тем больше, чем толще и неподатливее стенка сосуда (возрастает при артериальной гипертензии и с возрастом) и чем меньше диаметр сосуда.

9 Гормоны *F. Lang*

Общая характеристика гормонов

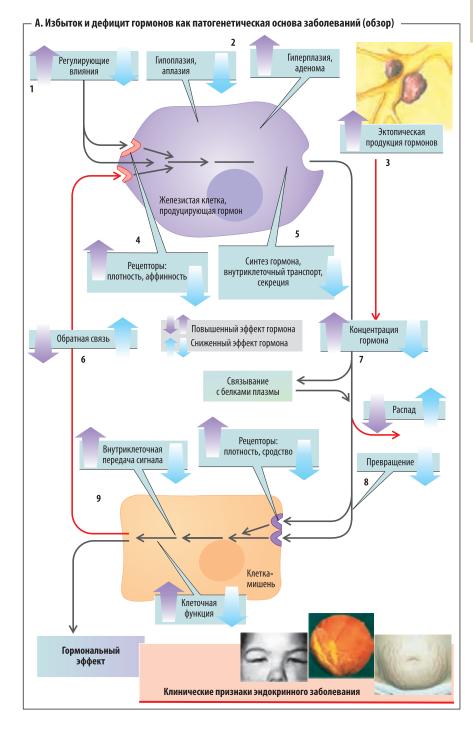
Гормоны предназначены для регуляции и контроля функций органов. Секреция гормонов стимулируется или ингибируется определенными факторами. Выделяют аутокринное, паракринное и эндокринное действия гормонов. При аутокринной регуляции гормоны влияют на те же клетки, в которых они синтезируются, при паракринной — на рядом расположенные клетки, при эндокринной регуляции гормоны транспортируются кровью к клеткам-мишеням, находящимся в других органах. В узком смысле, гормоны оказывают свое действие преимущественно через эндокринную регуляцию. Для осуществления эндокринной регуляции гормоны должны сохранять свою активность до достижения клеток-мишеней. Для проявления эффекта некоторых гормонов требуется их активация (см. ниже). Путь реализации гормонов (эндокринный, паракринный или аутокринный) определяется способом переноса гормона к клеткаммишеням.

В клетках-мишенях гормоны связываются со специфическими рецепторами и действуют через различные механизмы внутриклеточной передачи сигнала (с. 6). Эффекты, которые вызывает гормон, снижают действие факторов, стимулирующих его выработку. В результате продукция гормона уменьшается, т. е. существует цикл регулирования выработки гормонов по механизму отрицательной обратной связи (→А, 6). В некоторых случаях регуляция выработки гормона осуществляется по механизму положительной обратной связи, т. е. гормоны стимулируют свою собственную секрецию. Если высвобождение гормона регулируется независимо от его эффектов, используют термин «контролирование» (→A, 1). На эндокринные железы может воздействовать несколько независимых контролирующих и регулирующих стимулов.

Эффектгормона (синие стрелки) снижается вследствие нарушения синтеза и депонирования гормона, например, при мутациях генов. К другим причинам относятся нарушения внутриклеточного транспорта и высвобождения гормона в кровь (→A, 5). Дефицит эффекта гормона развивается также при уменьшении стимулирующего влияния на эндокринные железы (→A, 1), снижении чувствительности клеток, продуцирующих гормоны (→A, 4), или уменьшении их количества (гипоплазия, аплазия; →A, 2), например, при разрушении гормонпродуцирующих кле-

ток вследствие аутоиммунных заболеваний, инфекций или ишемии.

К возможным причинам недостаточности эффектов гормонов также относятся быстрая инактивация или ускоренное разрушение гормона. При связывании гормона сбелками плазмы (→**A**, **7**) продолжительность его действия зависит от фракции связанного гормона. В связанной сбелками форме гормон не проявляет активности. С другой стороны, это защищает его от разрушения и выведения из организма с мочой.


Некоторые гормоны в клетках-мишенях вначале должны превратиться в активную форму (→A, 8). Если такое их превращение невозможно, например, из-за дефектов фермента, гормон остается неактивным. Действие гормона не проявляется в случае нечувствительности органов-мишеней, например при дефекте или ингибировании (антителами) рецепторов либо аномалии внутриклеточной передачи сигналов, а также нарушении функции клеток- или органовмишеней (→A, 9).

Усиление действия гормона (фиолетовые стрелки) происходит прежде всего при увеличении его секреции, что может быть обусловлено увеличением влияния отдельных стимулов (→A, 1), повышением чувствительности (→A, 4) или числа гормонпродуцирующих клеток (гиперплазия, аденома) (→A, 2). Избыток гормонов наблюдается при их синтезе недифференцированными опухолевыми клетками (эктопическая продукция гормонов) (→A, 3). Особенно часто наблюдается эндокринная активность мелкоклеточного рака легкого.

Действие гормонов усиливается также при их слишком медленном распаде или инактивации (→A, 7), например, при нарушении функции органов, в которых происходит их инактивация (почки или печень). Распад гормонов замедляется при их связывании с белками плазмы, однако эта фракция не обладает биологической активностью (см. выше).

Наконец, эффекты гормонов увеличиваются при гиперчувствительности органов-мишеней (избыток рецепторов или повышение их чувствительности), усилении внутриклеточной передачи сигнала или гиперфункции гормоночувствительных клеток (→А, 9). Например, возможна стимуляция рецепторов гормонов антителами.

Клинические проявления, т. е. комплекс патофизиологических изменений в организме, определяются подавлением или усилением специфических гормональных эффектов.

Нарушения регуляторных контуров эндокринной системы

Гормоны обычно составляют часть регуляторных контуров. Нарушение одного элемента в таком контуре вызывает характерные изменения в других элементах.

Независимая от гипофиза секреция гормонов обычно регулируется метаболитами, на которые действует конкретный гормон. Воздействие гормона на органы-мишени, как правило, приводит к уменьшению стимуляции высвобождения гормона (регуляторный контур с отрицательной связью). Одним из примеров служит секреция инсулина (→A, 1): повышение концентрации глюкозы в плазме стимулирует высвобождение инсулина, который действует на клетки-мишени, например печень (усиливается гликопиз, ингибируется глюконеогенез и синтез гликогена), что вызывает снижение концентрации глюкозы.

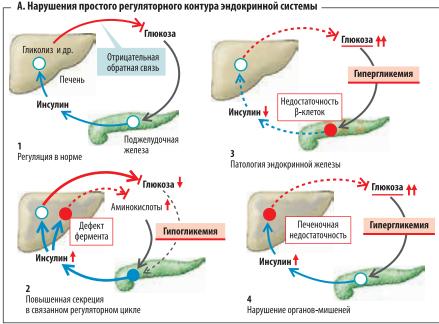
Если концентрация инсулина выше, чем необходимо для данного уровня глюкозы (гиперинсулинизм), развивается гипогликемия. Кроме опухолей, синтезирующих инсулин, к гипогликемии может приводить наложение друг на друга регуляторных контуров. Так, секрецию инсулина стимулируют определенные аминокислоты, а некоторые эффекты инсулина (стимуляция синтеза белков, ингибирование протеолиза) снижают концентрацию аминокислот в плазме. Нарушение катаболизма аминокислот, например, вследствие дефекта ферментов вызывает гипогликемию из-за повышения концентрации аминокислот в плазме, которые усиливают секрецию инсулина (+А, 2).

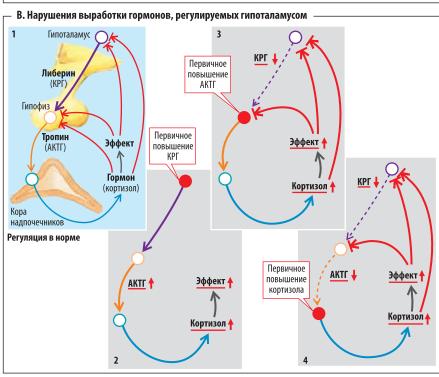
При патологии эндокринных желез (+A, 3) уровень гормона и, следовательно, гормональные эффекты снижаются. Например, недостаточность β-клеток вызывает *гипергликемию*.

Гормональный эффект уменьшается при снижении чувствительности клеток органов-мишеней (→А, 4). Печеночная недостаточность вызывает гипергликемию, что, в свою очередь, повышает концентрацию инсулина в крови. С другой стороны, нарушение распада аминокислот при печеночной недостаточности приводит к гипогликемии через увеличение

концентрации аминокислот в крови и последующей стимуляции секреции инсулина (*см. выше*; →**A, 2**).

Секреция гормонов периферическими железами контролируется гипоталамусом и гипофизом (трансгипофизарный путь). Концентрация гормонов, на секрецию которых влияют гипоталамус и гипофиз, всегда регулируется в плазме (→В, 1). Либерины (рилизинг-гормоны), образующиеся в гипоталамусе, вызывают высвобождение тропных гормонов гипофиза. Тропные гормоны стимулируют высвобождение соответствующего гормона в периферической эндокринной железе. Гормон и, в некоторой степени, эффекты, вызываемые им, ингибируют высвобождение либеринов гипоталамуса и тропных гормонов гипофиза. Пример (→В, 1) демонстрирует регуляцию выработки кортизола в коре надпочечников кортикотропин-рилизинг гормоном (кортиколиберином, КРБ) и адренокортикотропным гормоном (АКТГ).


Снижение синтеза периферических гормонов может быть обусловлено гипофункцией гипоталамуса, гипофиза и самих периферических эндокринных желез. Основная причина повышения секреции периферических гормонов — неадекватно высокая секреция либеринов, тропных гормонов или периферических гормонов в железах либо их эктопическая продукция (с. 278: → A. 3).


При **повышении секреции либеринов** (→**B**, **2**) концентрация либеринов, тропных и периферических гормонов в крови увеличивается.

При **повышении секреции тропных гормонов** концентрация тропных и периферических гормонов в крови увеличивается, а либеринов — снижается (**+B**, **3**).

При **повышении секреции периферических гормонов** высвобождение либеринов и тропных гормонов подавляется (→**B**, **4**).

Аналогично первичный дефицит либеринов вызывает недостаточность тропных и периферических гормонов. В то же время первичное уменьшение выработки тропинов приводит к снижению концентрации периферических гормонов, но повышению секреции либеринов. Первичная недостаточность гормонов периферических эндокринных желез обусловливает повышенную секрецию либеринов и тропных гормонов.

