
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321815743
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321815743
https://plusone.google.com/share?url=http://www.informit.com/title/9780321815743
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321815743
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321815743/Free-Sample-Chapter

E-1 E-2

E-3

E-4

BUC

Goals
Constraints
Business Event List

PUC
E-6

E-8

E-7

E-5

Conception Scoping
Work

Investigation
Product

Determination
Requirements

Definition Construction

Requirements

Outsource
Supplier

External Requirements Strategy

I-1 I-2

I-3

I-4

BUC

Business Event List

PUC
I-5

I-6

Conception Scoping
Work

Investigation
Product

Determination
Requirements

Definition Construction

Stories

Developer

Iterative Requirements Strategy

S-1 S-2 S-3BUC PUC
S-4 S-5

Conception Scoping
Work

Investigation
Product

Determination
Requirements

Definition Construction

Developer

Requirements

Goals
Constraints
Business Event List

Sequential Requirements Strategy

Requirements Strategy Maps

Development Backlog

Requirement

Prioritized

Prioritized

Feedback

FeedbackPriority

The
Work

Analyze
Business

Needs

Develop
Product

Write
Require-
ments

Analysis
Artifacts

Business
Event
List

(Analysis
Backlog)

Prioritized

Feedback
Feedback

Working
Product

Business
Needs

Requirement

Requirement

Requirement
Requirement

Iterative Requirements Process

Design and
Develop

Project
Blastoff

Requirements

Work Scope

Domain
Knowledge

Stakeholders &
Management

Reuse Library
Reusable

Requirements

Business
Needs Product

Use and
Evolution

Risks and
Costs

Reviewed
Specification

Stakeholders

Wants and
Needs

Rejects

Owner

Missing
RequirementsRequirements

Template

Quality
Gateway Strategic

Plan for
Product

Stakeholders

Strategic
Plan for
Product

New Needs

Architecture

Requirements
Reuse

Prototype
the Work

Trawl for
Knowledge

Review the
Requirements

Write the
Requirement

Initial Costs

Enterprise Models

Product

Project
Goals

Potential
Requirement

Potential
Requirement

Formalized
Requirement

Accepted
Requirement

Requirement
for

Experiment

This page intentionally left blank

Mastering the
Requirements
Process
Third Edition

This page intentionally left blank

Mastering the
Requirements
Process
Getting Requirements
Right

Third Edition

Suzanne Robertson
James Robertson

Upper Saddle River, NJ ● Boston ● Indianapolis ● San Francisco

New York ● Toronto ● Montreal ● London ● Munich ● Paris ● Madrid

Capetown ● Sydney ● Tokyo ● Singapore ● Mexico City

�

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

Rabbit, horse, and elephant icons courtesy of all-silhouettes.com. Owl icon courtesy of iStockphoto.com;
all rights reserved.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information
or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Robertson, Suzanne.
 Mastering the requirements process : getting requirements right / Suzanne Robertson,
James Robertson.—3rd ed.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-0-321-81574-3 (hardcover : alk. paper) 1. Project management. 2. Computer
software—Development. I. Robertson, James. II. Title.
 TA190.R48 2012
 005.1068’4—dc23
 2012018961

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission to use material from this work, please submit a written request
to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey
07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-81574-3
ISBN-10: 0-321-81574-2
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
Third printing, July 2014

For one generation,

Reginald, Margaret, Nick, and Helen,

and another,

Carlotta, Cameron, and Louise

�

This page intentionally left blank

 vii

Contents

Preface to the Third Edition xxi

Foreword to the First Edition xxiii

Acknowledgments xxv

1 Some Fundamental Truths 1
in which we consider the essential contribution of requirements

Truth 1 1
Truth 2 2
Truth 3 3
Truth 4 4
Truth 5 5
Truth 6 6
Truth 7 7
Truth 8 7
Truth 9 8
Truth 10 8
Truth 11 9
What Are These Requirements Anyway? 9

Functional Requirements 10
Non-functional Requirements 10
Constraints 11

The Volere Requirements Process 11

2 The Requirements Process 13
in which we present a process for discovering requirements and
discuss how you might use it

The Requirements Process in Context 14
A Case Study 15
Project Blastoff 15
Trawling for Requirements 17
Quick and Dirty Modeling 19
Scenarios 20
Writing the Requirements 20

viii ● Contents

Quality Gateway 22
Reusing Requirements 23
Reviewing the Requirements 23
Iterative and Incremental Processes 24
Requirements Retrospective 25
Evolution of Requirements 26
The Template 27
The Snow Card 29
Your Own Requirements Process 31
Formality Guide 32
The Rest of This Book 33

3 Scoping the Business Problem 35
in which we establish a definition of the business area to be
changed, thereby ensuring that the project team has a clear
vision of what their project is meant to achieve

Project Blastoff 35
Formality Guide 38
Setting the Scope 38

Separate the Work from its Environment 40
IceBreaker 41

First-Cut Work Context 42
Scope, Stakeholders, and Goals 43
Stakeholders 44

The Sponsor 45
The Customer 47
Users: Understand Them 48

Other Stakeholders 50
Consultants 51
Management 51
Subject-Matter Experts 51
Core Team 51
Inspectors 52
Market Forces 52
Legal Experts 52
Negative Stakeholders 52
Industry Standard Setters 52
Public Opinion 53
Government 53
Special-Interest Groups 53
Technical Experts 53
Cultural Interests 53
Adjacent Systems 53

Finding the Stakeholders 54
Goals: What Do You Want to Achieve? 54

Purpose 55
Advantage 56
Measurement 56

 Contents ● ix

Constraints 59
Solution Constraints 59
Project Constraints 60

Naming Conventions and Definitions 60
How Much Is This Going to Cost? 61
Risks 62
To Go or Not to Go 63
Blastoff Meetings 64
Summary 65

4 Business Use Cases 67
in which we discuss a fail-safe way of partitioning the work and so
smooth the way for your requirements investigation

Understanding the Work 67
Formality Guide 69
Use Cases and Their Scope 69
The Scope of the Work 70

The Outside World 72
Business Events 73

Time-Triggered Business Events 74
Why Business Events and Business Use Cases Are a Good Idea 75

The “System” Cannot Be Assumed 76
Step Back 77

Finding the Business Events 78
Business Use Cases 80
Business Use Cases and Product Use Cases 82

Actors 84
Summary 85

5 Investigating the Work 87
in which we come to an understanding of what the business is
doing, and start to think about what it might like to do

Trawling the Business 87
Formality Guide 89
Trawl for Knowledge 89
The Business Analyst 91
Trawling and Business Use Cases 92
The Brown Cow Model 93
The Current Way of Doing Things (How-Now) 94
Apprenticing 98
Business Use Case Workshops 99

Outcome 101
Scenarios 101
Business Rules 101

Interviewing the Stakeholders 102
Asking the Right Questions 104
Listening to the Answers 105

x ● Contents

Looking for Reusable Requirements 106
Quick and Dirty Process Modeling 107
Prototypes and Sketches 109

Low-Fidelity Prototypes 111
High-Fidelity Prototypes 115

Mind Maps 116
The Murder Book 119
Video and Photographs 120
Wikis, Blogs, Discussion Forums 122
Document Archeology 123
Family Therapy 125
Choosing the Best Trawling Technique 125
Finally . . . 127

6 Scenarios 129
in which we look at scenarios, and how the business analyst
uses them to communicate with the stakeholders

Formality Guide 129
Scenarios 130
The Essence of the Business 135
Diagramming the Scenario 138
Alternatives 139
Exceptions 140
What if? Scenarios 142
Misuse Cases and Negative Scenarios 142
Scenario Template 143
Summary 145

7 Understanding the Real Problem 147
in which we “think above the line” to find the true essence of
the business, and so deliver the right product—one that solves
the right problem

Formality Guide 149
The Brown Cow Model: Thinking Above the Line 149

The Essence 150
Abstraction 153
Swim Lanes Begone 154

Solving the Right Problem 156
Moving into the Future 157
How to Be Innovative 160
Systemic Thinking 162
Value 165
Personas 166
Challenging Constraints 169
Innovation Workshops 171
Brainstorming 173
Back to the Future 174

 Contents ● xi

8 Starting the Solution 177
in which we bring the essence of the business into the
technological world of the implementation

Iterative Development 179
Essential Business 179
Determine the Extent of the Product 180
Consider the Users 181
Designing the User Experience 183
Innovation 184

Convenience 184
Connections 185
Information 186
Feeling 187

Sketching the Interface 188
The Real Origin of the Business Event 189
Adjacent Systems and External Technology 190

Active Adjacent Systems 190
Autonomous Adjacent Systems 192
Cooperative Adjacent Systems 193

Cost, Benefit, and Risks 194
Document Your Design Decisions 195
Product Use Case Scenarios 196
Putting It All Together 199

9 Strategies for Today’s Business Analyst 203
in which we consider strategies for the business analyst to guide
requirements discovery in today’s changing environments

Balancing Knowledge, Activities, and People 204
Common Project Requirements Profiles 204
How Much Knowledge Is Needed Before Each Breakout? 205
External Strategy 206

Conception to Scoping 207
Scoping to Work Investigation 207
Work Investigation to Product Determination 208
Work Investigation to Atomic Requirements Definition 208
Work Investigation to Building 208
Product Determination to Atomic Requirements Definition 209
Product Determination to Construction 209
Atomic Requirements Definition to Building 209

Iterative Strategy 210
Conception to Scoping 210
Scoping to Work Investigation 210
Work Investigation to Product Determination 211
Work Investigation to Requirements Definition 211
Product Determination to Requirements Definition 212
Requirements Definition to Construction 212

Sequential Strategy 212
Conception to Scoping 213
Scoping to Work Investigation 213

xii ● Contents

Work Investigation to Product Determination 214
Product Determination to Requirements Definition 214
Requirements Definition to Building 214

Your Own Strategy 215
Sharpening Your Requirements Skills 215

No Longer a Stenographer 216
Limiting the Number of Requirements That Are Written 217
Reusing Requirements 217
Innovation and the Business Analyst 218
Looking for Business Rules 218
The Business Analyst as Ideas Broker 219
Systemic Thinking and the Business Analyst 220
The Business Analyst as Visualizer 221

Summary 222

10 Functional Requirements 223
in which we look at those requirements that cause the product
to do something

Formality Guide 224
Functional Requirements 225
Uncovering the Functional Requirements 225
Level of Detail or Granularity 228
Description and Rationale 229
Data, Your Secret Weapon 231

Data Models 231
Data Dictionary 232

Exceptions and Alternatives 233
Conditional Requirements 234
Avoiding Ambiguity 234
Technological Requirements 237
Grouping Requirements 237
Alternatives to Functional Requirements 238

Scenarios 239
User Stories 239
Business Process Models 240

Requirements for COTS 241
Summary 242

11 Non-functional Requirements 245
in which we look at the requirements that specify how well
your product does what it does

An Introduction to Non-functional Requirements 246
Formality Guide 246
Functional Versus Non-functional Requirements 247
Use Cases and Non-functional Requirements 248
The Non-functional Requirements Types 249
Look and Feel Requirements: Type 10 250
Usability and Humanity Requirements: Type 11 253

 Contents ● xiii

Performance Requirements: Type 12 257
Operational and Environmental Requirements: Type 13 259
Maintainability and Support Requirements: Type 14 261
Security Requirements: Type 15 262

Access 263
Privacy 263
Integrity 264
Auditing 265
. . . And No More 265

Cultural Requirements: Type 16 266
Legal Requirements: Type 17 268

Sarbanes-Oxley Act 269
Other Legal Obligations 270
Standards 271

Finding the Non-functional Requirements 271
Blogging the Requirements 271
Use Cases 272
The Template 274
Prototypes and Non-functional Requirements 274
The Client 275

Don’t Write a Solution 276
Summary 277

12 Fit Criteria and Rationale 279
in which we show how measuring requirements makes them
unambiguous, understandable, communicable, and testable

Formality Guide 280
Why Does Fit Need a Criterion? 280
The Rationale for the Rationale 282
Deriving Fit Criteria 284
Scale of Measurement 285
Fit Criteria for Non-functional Requirements 286

Product Failure 288
Subjective Tests 289
Standards 289
Look and Feel Requirements 290
Usability and Humanity Requirements 291
Performance Requirements 292
Operational Requirements 293
Maintainability Requirements 294
Security Requirements 294
Cultural Requirements 294
Legal Requirements 295

Fit Criteria for Functional Requirements 295
Test Cases 296

Forms of Fit Criteria 296
Defining the Data 297
Graphic Fit Criteria 297
Decision Tables 297
Graphs 298

xiv ● Contents

Use Cases and Fit Criteria 299
Fit Criterion for Project Purpose 299
Fit Criteria for Solution Constraints 300
Summary 301

13 The Quality Gateway 303
in which we prevent unsuitable requirements from becoming
part of the specification

Formality Guide 304
Requirements Quality 305
Using the Quality Gateway 306
Within Scope? 307

Relevancy 309
Testing Completeness 311

Are There Any Missing Attributes? 311
Meaningful to Stakeholders? 312

Testing the Fit Criterion 312
Consistent Terminology 313
Viable within Constraints? 314
Requirement or Solution? 316
Requirement Value 316
Gold Plating 317
Requirements Creep 317
Implementing the Quality Gateway 319

Alternative Quality Gateways 320
Summary 321

14 Requirements and Iterative Development 323
in which we look at how to discover and implement requirements
in an iterative development environment

The Need for Iterative Development 323
An Iterative Requirements Process 324

The Work 324
Analyze Business Needs 324
Write User Stories 325
Develop Product 326

Business Value Analysis and Prioritization 327
How to Write a Good User Story 329

Questions to Ask 329
Formalizing Your User Stories 331
Fleshing out the Story 332

Iterative Requirements Roles 333
Business Knowledge 333
Analytical and Communication Knowledge 334
Technical Knowledge 334

Summary 335

 Contents ● xv

15 Reusing Requirements 337
in which we look for requirements that have already been
written and explore ways to make use of them

What Is Reusing Requirements? 338
Sources of Reusable Requirements 341
Requirements Patterns 342

Christopher Alexander’s Patterns 343
A Business Event Pattern 344

Context of Event Response 344
Processing for Event Response 345
Data for Event Response 345

Forming Patterns by Abstracting 346
Patterns for Specific Domains 348
Patterns Across Domains 349

Domain Analysis 351
Summary 351

16 Communicating the Requirements 353
in which we turn the requirements into communicable form

Formality Guide 353
Turning Potential Requirements into Written Requirements 354
Knowledge Versus Specification 354
The Volere Requirements Specification Template 357

Template Table of Contents 357
Template Divisions 358

Discovering Atomic Requirements 359
Snow Cards 359

Attributes of Atomic Requirements 361
Requirement Number 361
Requirement Type 361
Event/BUC/PUC # 361
Description 362
Rationale 362
Originator 363
Fit Criterion 363
Customer Satisfaction and Customer Dissatisfaction 363
Priority 364
Conflicts 364
Supporting Materials 365
History 365

Assembling the Specification 365
Automated Requirements Tools 366
Functional Requirements 367
Non-functional Requirements 368
Project Issues 369
Summary 369

xvi ● Contents

17 Requirements Completeness 371
in which we decide whether our specification is complete,
and set the priorities of the requirements

Formality Guide 372
Reviewing the Specification 373
Inspections 373
Find Missing Requirements 374
Have All Business Use Cases Been Discovered? 376

1. Define the Scope 376
2. Identify Business Events and Non-events 377
Non-events 378
3. Model the Business Use Case 378
4. Define the Business Data 378
5. CRUD Check 380
6. Check for Custodial Processes 381
Repeat Until Done 382

Prioritizing the Requirements 382
Prioritization Factors 382
When to Prioritize 383
Requirement Priority Grading 384
Prioritization Spreadsheet 385

Conflicting Requirements 386
Ambiguous Specifications 388
Risk Assessment 388

Project Drivers 389
Project Constraints 390
Functional Requirements 390

Measure the Required Cost 391
Summary 391

Appendix A Volere Requirements Specification Template 393
a guide for writing a rigorous and complete requirements
specification

Contents 393
Project Drivers 393
Project Constraints 393
Functional Requirements 393
Non-functional Requirements 393
Project Issues 394

Use of This Template 394
Volere 394
Requirements Types 395
Testing Requirements 396
Atomic Requirements Shell 396
 1. The Purpose of the Project 397

1a. The User Business or Background of the Project Effort 397
1b. Goals of the Project 398

 2. The Stakeholders 400
2a. The Client 400

 Contents ● xvii

2b. The Customer 401
2c. Other Stakeholders 401
2d. The Hands-on Users of the Product 403
2e. Personas 404
2f. Priorities Assigned to Users 405
2g. User Participation 406
2h. Maintenance Users and Service Technicians 407

 3. Mandated Constraints 407
3a. Solution Constraints 407
3b. Implementation Environment of the Current System 409
3c. Partner or Collaborative Applications 410
3d. Off-the-Shelf Software 410
3e. Anticipated Workplace Environment 412
3f. Schedule Constraints 413
3g. Budget Constraints 414
3h. Enterprise Constraints 414

 4. Naming Conventions and Terminology 415
4a. Definitions of All Terms, Including Acronyms, Used by
 Stakeholders Involved in the Project 415

 5. Relevant Facts and Assumptions 416
5a. Relevant Facts 417
5b. Business Rules 417
5c. Assumptions 418

 6. The Scope of the Work 420
6a. The Current Situation 420
6b. The Context of the Work 420
6c. Work Partitioning 422
6d. Specifying a Business Use Case 424

 7. Business Data Model and Data Dictionary 425
7a. Data Model 425
7b. Data Dictionary 427

 8. The Scope of the Product 429
8a. Product Boundary 429
8b. Product Use Case Table 431
8c. Individual Product Use Cases 432

 9. Functional and Data Requirements 433
9a. Functional Requirements 433

Non-functional Requirements 435
10. Look and Feel Requirements 435

10a. Appearance Requirements 435
10b. Style Requirements 436

11. Usability and Humanity Requirements 437
11a. Ease of Use Requirements 437
11b. Personalization and Internationalization Requirements 438
11c. Learning Requirements 439
11d. Understandability and Politeness Requirements 440
11e. Accessibility Requirements 441

12. Performance Requirements 441
12a. Speed and Latency Requirements 441
12b. Safety-Critical Requirements 442
12c. Precision or Accuracy Requirements 443

xviii ● Contents

12d. Reliability and Availability Requirements 444
12e. Robustness or Fault-Tolerance Requirements 445
12f. Capacity Requirements 445
12g. Scalability or Extensibility Requirements 446
12h. Longevity Requirements 446

13. Operational and Environmental Requirements 447
13a. Expected Physical Environment 447
13b. Requirements for Interfacing with Adjacent Systems 447
13c. Productization Requirements 448
13d. Release Requirements 449

14. Maintainability and Support Requirements 449
14a. Maintenance Requirements 449
14b. Supportability Requirements 450
14c. Adaptability Requirements 450

15. Security Requirements 451
15a. Access Requirements 451
15b. Integrity Requirements 452
15c. Privacy Requirements 453
15d. Audit Requirements 454
15e. Immunity Requirements 454

16. Cultural Requirements 454
16a. Cultural Requirements 454

17. Legal Requirements 455
17a. Compliance Requirements 455
17b. Standards Requirements 456

Project Issues 457
18. Open Issues 457
19. Off-the-Shelf Solutions 458

19a. Ready-Made Products 458
19b. Reusable Components 459
19c. Products That Can Be Copied 459

20. New Problems 460
20a. Effects on the Current Environment 460
20b. Effects on the Installed Systems 460
20c. Potential User Problems 461
20d. Limitations in the Anticipated Implementation Environment
 That May Inhibit the New Product 461
20e. Follow-Up Problems 462

21. Tasks 462
21a. Project Planning 462
21b. Planning of the Development Phases 463

22. Migration to the New Product 463
22a. Requirements for Migration to the New Product 464
22b. Data That Must Be Modified or Translated for the New System 465

23. Risks 465
24. Costs 467
25. User Documentation and Training 468

25a. User Documentation Requirements 468
25b. Training Requirements 469

26. Waiting Room 470
27. Ideas for Solutions 471

 Contents ● xix

Appendix B Stakeholder Management Templates 473
Stakeholder Map 473
Stakeholder Template 475

Appendix C Function Point Counting: A Simplified
Introduction 479
in which we look at a way to accurately measure the size or
functionality of the work area, with a view toward using the
measurement to estimate the requirements effort

Measuring the Work 479
A Quick Primer on Counting Function Points 481

Scope of the Work 481
Data Stored by the Work 482
Business Use Cases 483

Counting Function Points for Business Use Cases 484
Counting Input Business Use Cases 484
Counting Output Business Use Cases 485
Counting Time-Triggered Business Use Cases 487

Counting the Stored Data 489
Internal Stored Data 489
Externally Stored Data 490

Adjust for What You Don’t Know 492
Now That I Have Counted Function Points, What’s Next? 492

Appendix D Volere Requirements Knowledge Model 495
Definitions of Requirements Knowledge Classes and Associations 495

Knowledge Classes 496
Associations 505

Knowledge Model Annotated with Template Section Numbers 508

 Glossary 511

 Bibliography 517

 Index 523

This page intentionally left blank

 xxi

Preface to the
Third Edition

Why a third edition of Mastering the Requirements Process? Because we need
it. Much water has passed under the bridge since the last edition of this book
was published, and much has happened in the requirements and develop-
ment world. We have applied the Volere requirements techniques described
in this book to many projects; we have received feedback from our projects
and those of clients and other practitioners of the Volere techniques; and
armed with that knowledge we felt it was time to update our book to reflect
the current state of requirements practice. Today’s systems, software, prod-
ucts, and services have to be more attractive and more appropriate if they are
to be noticed, bought, used and valued. More than ever, we need to be assured
that we are solving the real problem. More than ever, we need to be doing a
better job with requirements discovery.

New techniques for software development—most noticeably the rise of
agile techniques—have changed the role of the requirements discoverer: not
the underlying truth of the requirements activity, but the way in which
requirements are discovered. Business analysts working with agile teams
perform their task differently. Combinations of iterative, incremental, and
spiral development techniques require the business analyst to go about the
requirements task in a different way.

Outsourcing has increased enormously, which, rather than lessening the
requirements burden, means that there is an even greater need to produce
accurate, and unambiguous, requirements. If you are planning to send your
specification to the far side of the world, you would like to think that your
outsourcer will understand it and know exactly what to build.

Despite all these changes in the way in which we develop and deliver our
products and services, one underlying fact is still there, and it is this: If we are
to build some software or a product or a service, then it must provide the optimal
value for its owner.

You will see the theme of optimal value developed in this edition, and
what it comes down to is that it does not matter how you develop your soft-
ware, but rather what that software does for its owner that matters. You can

xxii ● Preface to the Third Edition

finish a project on time and on budget, but if the delivered software brings
little benefit to the owning organization, it is a waste of money. Alterna-
tively, you can overspend and be late, but if the delivered product brings
several million dollars of value, then it is more beneficial than its cheaper
counterpart.

The task of the business analyst is to discover the real business that the
software is supposed to improve. This cannot be done at the keyboard sim-
ply because software is a solution, and to provide a valuable solution you
first have to understand the problem—the real problem—that it is meant to
solve. In this edition we have written about thinking above the line. The line
in this case comes from the Brown Cow Model (you’ll have to read the book
to find out what it is) and represents the division between the technological
implementations and the abstract, essential world where you discover the
real needs. We have written about innovation as a way of finding better, more
appropriate needs and solutions.

This, then, is the task of the requirements discoverer, and indeed of this
edition: to delve more deeply into how we understand our client organiza-
tions, and how we find better solutions by discovering and communicating
a better understanding of the problem.

London, June 2012

For college instructors who adopt this book for their courses, some of the
graphics used herein are available in the Pearson Instructor Resource Cen-
ter (www.pearsonhighered.com) for your use in preparing course materials.

www.pearsonhighered.com

 xxiii

Foreword to the
First Edition

It is almost ten years now since Don Gause and I published Exploring Require-
ments: Quality Before Design. Our book is indeed an exploration, a survey of
human processes that can be used in gathering complete, correct, and com-
municable requirements for a software system, or any other kind of product.

The operative word in this description is “can,” for over this decade the
most frequent question my clients have asked is, “How can I assemble these
diverse processes into a comprehensive requirements process for our infor-
mation systems?”

At long last, James and Suzanne Robertson have provided an answer I can
conscientiously give to my clients. Mastering the Requirements Process shows,
step by step, template by template, example by example, one well-tested way
to assemble a complete, comprehensive requirements process.

One watchword of their process is “reasonableness.” In other words, every
part of the process makes sense, even to people who are not very experi-
enced with requirements work. When introducing this kind of structure to
an organization, reasonableness translates into easier acceptance—an essen-
tial attribute when so many complicated processes are tried and rejected.

The process they describe is the Volere approach, which they developed
as an outcome of many years helping clients to improve their requirements.
Aside from the Volere approach itself, James and Suzanne contribute their
superb teaching skills to the formidable task facing anyone who wishes to
develop requirements and do them well.

The Robertsons’ teaching skills are well known to their seminar students
as well as to fans of their Complete Systems Analysis books. Mastering the
Requirements Process provides a much-requested front end for their analysis
books—or for anyone’s analysis books, for that matter.

We can use all the good books on requirements we can get, and this is
one of them!

Gerald M. Weinberg
www.geraldmweinberg.com

February 1999

READING
Gause, Donald C., and
Gerald M. Weinberg.
Exploring Requirements:
Quality Before Design.
Dorset House, 1989.

READING
Robertson, James, and
Suzanne Robertson.
Complete Systems Analysis:
The Workbook, the Textbook,
the Answers. Dorset House,
1998.

www.geraldmweinberg.com

This page intentionally left blank

 xxv

Acknowledgments

Writing a book is hard. Without the help and encouragement of others, it
would be nearly impossible, at least for these authors. We would like to take
a few lines to tell you who helped and encouraged and made it possible.

Andy McDonald of Vaisala was generous with his time, and gave us con-
siderable technical input. We hasten to add that the IceBreaker product in
this book is only a distant relation to Vaisala’s IceCast systems. The Vaisala
User Group, of which E. M. Kennedy holds the chair, also provided valuable
technical input.

Thanks are due to the technical reviewers who gave up their time to
wade through some fairly incomprehensible stuff. Mike Russell, Susannah
Finzi, Neil Maiden, Tim Lister, and Bashar Nuseibeh all deserve honorable
mentions.

We would like to acknowledge our fellow principals at the Atlantic Sys-
tems Guild—Tom DeMarco, Peter Hruschka, Tim Lister, Steve McMenamin,
and John Palmer—for their help, guidance, and incredulous looks over the
years.

The staff at Pearson Education contributed. Sally Mortimore, Alison Birt-
well, and Dylan Reisenberger were generous and skillful, and used such per-
suasive language whenever we spoke about extending the deadline.

For the second edition, Peter Gordon provided guidance and persua-
sion at exactly the right times. Kim Boedigheimer, John Fuller, and Lara
Wysong were invaluable at steering us through the publishing process. Jill
Hobbs tamed our faulty grammar and punctuation, and made this text read-
able. The technical input of Ian Alexander, Earl Beede, Capers Jones, and
Tony Wasserman goes far beyond valuable. Thank you, gentlemen, for your
insights. And we hasten to add that any remaining technical errors are ours
and ours alone.

One would imagine that by the time one got to the third edition, one
would not need help. Not so. We gratefully acknowledge the alphabetic
trinity of Gary Austin, Earl Beede, and John Capron. Our Volere colleague
Stephen Mellor sorted out some of the trickier issues we encountered. Our

xxvi ● Acknowledgments

other Volere colleagues James Archer and Andrew Kendall have helped over
the years with their ideas, experience, and meaningful conversations over a
glass of wine.

The Pearson crew of Peter Gordon, Kim Boedigheimer, and Julie Nahil
were invaluable. We want to point out the special work done by Alan Cle-
ments to design the cover. Once again, Jill Hobbs stepped up to tame our
grammatical misdemeanors and semantic transgressions.

And finally we thank the students at our seminars and our consulting
clients. Their comments, their insistence on having things clearly explained,
their insights, and their feedback have all made some difference, no matter
how indirect, to this book.

Thank you, everybody.

James and Suzanne Robertson
London, June 2012

 13

2
�in which we present a process for

discovering requirements and
discuss how you might use it

The Requirements
Process

This book is a distillation of our experience. In it, we describe a requirements
process that we have derived from our years of working in the requirements
arena—working with clever people who do clever things, and working on
projects in wonderfully diverse domains. We have also learned much from
the experience of the many people around the world who use various parts
of our techniques.

We developed the Volere Requirements Process and its associated specifi-
cation template from the activities and deliverables that had proved them-
selves to be most effective in project and consulting assignments with our
clients. The result of this experience is a requirements discovery and spec-
ification process whose principles can be applied—and indeed have been
applied—to almost all kinds of application types in almost all kinds of devel-
opment environments.

We want to stress from the very beginning that while we are presenting a
process, we are using it as a vehicle for discovering requirements; we do not
expect you to wave this process around and tell your co-workers that it is
“the only way to do things.” However, we have high expectations that you
will find many useful things from this process that will, in turn, help you to
discover and communicate your requirements more productively and accu-
rately. We have personally seen hundreds of companies adapt the process to
their own cultures and organizations, and we know of thousands more that
have done so.

Our clients who use the Volere Requirements Process are those who
develop their products using RUP, incremental, iterative, spiral, Scrum, or
other variations of iterative development; more formalized waterfall pro-
cesses; and a variety of homebrewed development processes. Over the years,

Whether you
are building
custom systems,
building systems
by assembling
components, using
commercial off-
the-shelf software,
accessing open-
source software,
outsourcing your
development, or
making changes to
existing software,
you still need to
explore, discover,
understand, and
communicate the
requirements.

If the right product
is to be built,
then the right
requirements have
to be discovered.

14 ● Chapter 2 The Requirements Process

all of these clients agreed with us: If the right product is to be built, the right
requirements have to be discovered. But requirements don’t come about by
fortuitous accident. To find the correct and complete requirements, you need
some kind of orderly process.

The Volere Requirements Process is shown in Figure 2.1. Each of the activ-
ities included in the figure, along with the connections between them, is
described in detail in subsequent chapters of this book.

The Requirements Process in Context

We need to point out—indeed, we need to stress—that this process is not
intended to be a waterfall approach. At various stages throughout this book,
we will point out how you might modify the process if you are using some
kind of iterative development.

Figure 2.1

This map of the Volere
Requirements Process
shows the activities and
their deliverables. We
have used a stylized
data flow notation.
Each activity (the
bubbles) and its
deliverables (named
arrows or documents)
are explained in the
text. The dotted lines
represent how this
process is used with
iterative projects.

Design and
Develop

Project
Blastoff

Requirements

Work Scope

Domain
Knowledge

Stakeholders &
Management

Reuse Library
Reusable

Requirements

Business
Needs Product

Use and
Evolution

Risks and
Costs

Reviewed
Specification

Stakeholders

Wants and
Needs

Rejects

Owner

Missing
RequirementsRequirements

Template

Quality
Gateway Strategic

Plan for
Product

Stakeholders

Strategic
Plan for
Product

New Needs

Architecture

Requirements
Reuse

Prototype
the Work

Trawl for
Knowledge

Review the
Requirements

Write the
Requirement

Initial Costs

Enterprise Models

Product

Project
Goals

Potential
Requirement

Potential
Requirement

Formalized
Requirement

Accepted
Requirement

Requirement
for

Experiment

 Project Blastoff ● 15

Requirements discovery should be seen as a necessary forerunner of any
construction activity, but it should also be viewed as something that can be
conducted quite quickly, sometimes quite informally, sometimes overlap-
ping with subsequent design and construction activities, but never ignored.

Let’s look briefly at each of the activities shown in Figure 2.1, which are
covered in more detail in subsequent chapters. The intention of this chap-
ter is to give you a gentle introduction to the process, its components, its
deliverables, and the ways that they fit together. If you want more detail on
any of the activities, feel free to jump ahead to the relevant chapter before
completing this overview.

As we go through the process, we describe it as if you were working
with a brand-new product—that is, developing something from scratch.
We take this approach to avoid, for the moment, becoming entangled in
the constraints that are part of all maintenance projects. Later, we will dis-
cuss requirements for those situations when the product already exists and
changes to it are required.

A Case Study

We will explain the Volere Requirements Process by taking you through a
project that uses it.

The IceBreaker project is to develop a product that predicts when and
where ice will form on roads, and to schedule trucks to treat the roads with
de-icing material. The new product will enable road authorities to more accu-
rately predict ice formation, schedule road treatments more precisely, and
thereby make the roads safer. The product will also reduce the amount of
de-icing material needed, which will help both the road authority’s finances
and the environment.

Project Blastoff

Imagine launching a rocket. 10 – 9 – 8 – 7 – 6 – 5 – 4 – 3 – 2 – 1 – blastoff! If all it
needed were the ability to count backward from 10, then even Andorra1 would
have its own space program. The truth of the matter is that before we get to
the final 10 seconds of a rocket launch, a lot of preparation has taken place.
The rocket has been fueled, and the course plotted—in fact, everything that
needs to be done if the rocket is to survive and complete a successful mission.

The key purpose of the project blastoff is to build the foundation for the
requirements discovery that is to follow, and to ensure that all the needed
components for a successful project are in place. The principal stakehold-
ers—the sponsor, the key users, the lead requirements analyst, technical and
business experts, and other people who are crucial to the success of the proj-
ect—gather together to arrive at a consensus on the crucial project issues.

“ The likelihood

of frost or ice forming is

determined by the energy

receipt and loss at the

road surface. This energy

flow is controlled by a

number of environmental

and meteorological

factors (such as

exposure, altitude, road

construction, traffic, cloud

cover, and wind speed).

These factors cause

significant variation in

road surface temperature

from time to time and

from one location to

another. Winter night-time

road surface temperatures

can vary by over 10°C

across a road network in a

county. ”—Vaisala News

Blastoff is also
known as “project
initiation,” “kickoff,”
“charter,” “project
launch,” and many
other things. We use
the term “blastoff”
to describe what
we are trying to
achieve—getting
the requirements
project launched
and flying.

FOOTNOTE 1
Andorra is a tiny
principality in the
Pyrenees mountains
between France and
Spain. Only since
1993 has it been

16 ● Chapter 2 The Requirements Process

The blastoff defines the scope of the business problem and seeks concur-
rence from the stakeholders that yes, this is the area of the owner’s orga-
nization that needs to be improved. The blastoff meeting confirms the
functionality to be included in the requirements discovery, and the func-
tionality that is to be specifically excluded.

Defining the scope of the business problem is usually the most conve-
nient way to start. In the IceBreaker project, the lead requirements analyst
coordinates the group members’ discussion as they come to a consensus on
the scope of the work—that is, the business area to be improved—and how
this work relates to the world around it. The meeting participants draw a
context diagram on a whiteboard to show which functionality is included
in the work, and by extension, which elements they consider to be outside
the scope of the ice forecasting business. The diagram defines—precisely
defines—the included functionality by showing the connections between
the work and the outside world. (More on this in the next chapter.) This use
of a context diagram is illustrated in Figure 2.2. Later, as the requirements
activity proceeds, the context diagram is used to reveal the optimal product
to help with this work.

When they have reached a reasonable agreement on the scope of the busi-
ness area to be studied, the group identifies the stakeholders. The stakeholders
are those people who have an interest in the product, or who have knowl-
edge pertaining to the product—in fact, anyone who has requirements for
it. For the IceBreaker project, the people who have an interest are the road
engineers, the truck depot supervisor, the weather forecasting people, road
safety experts, ice treatment consultants, and so on. These people must be
identified, so that the requirements analysts can work with them to find all
the requirements. The context diagram, by establishing the extent of the
work, helps to identify many of the stakeholders.

R efer to Chapter 3,
Scoping the Business
Problem, for a detailed
discussion of project
blastoff.

a parliamentary
democracy, but it retains
its ancient chiefs of
state as a coprincipality.
The responsibilities of
the French prince are
now vested with the
president of France. On
the Spanish side, the
“prince” is the bishop of
Seo de Urgel.
 Andorra became
famous in the 1960s for
having a defense budget
of $4.50, a tale that
has become the stuff of
legend. Today Andorra’s
defense budget is zero.

Figure 2.2

The context diagram
is used to build a
consensus among the
stakeholders as to the
scope of the work that
needs to be improved.
The eventual product
will be used to do part
of this work.

The work

 Trawling for Requirements ● 17

The blastoff also confirms the goals of the project. The blastoff group
comes to an agreement on the business reason for doing the project, and
agrees that there is a clear and measurable benefit to be gained by doing the
project. The group also agrees that the product is worthwhile for the business
to make the investment, and that the organization is capable of building and
operating it.

It is sensible project management practice at this stage to produce a pre-
liminary estimate of the costs involved for the requirements part of the proj-
ect—this can be done by using the information already contained in the
context diagram. It is also sensible project management to make an early
assessment of the risks that the project is likely to face. Although these risks
might seem like depressing news, it is always better to get an idea of the
downside of the project (its risk and cost) before being swept away by the
euphoria of the benefits that the new product is intended to bring.

The blastoff group members arrive at a consensus on whether the project
is worthwhile and viable—that is, they make the “go/no go” decision. It
might seem brutal to kill off an embryonic project, but we know from bitter
experience that it is better to cancel a project at an early stage than to have it
stagger on for months—or years—consuming valuable resources when it has
little or no chance of success. The blastoff group carefully considers whether
the product is viable, and whether its benefits outweigh its costs and risks.

Alternatively, if too many unknowns remain at this point, the blastoff
group might decide to start the requirements investigation with the inten-
tion of reviewing the requirements after a short while and reassessing the
value of the project.

Trawling for Requirements

Once the blastoff is completed, the business analysts start trawling the work
to learn and understand its functionality—“What’s going on with this piece
of the business, and what do they want it to do?” For convenience and con-
sistency, they partition the work context diagram into business use cases.

Each business use case is an amount of functionality needed by the work
to make the correct response to a business event. (These terms will be fully
explained soon.) A requirements analyst is assigned to each of the business
use cases—the analysts can work almost independently of one another—for
further detailed study. The analysts use trawling techniques such as appren-
ticing, scenarios, use case workshops, and many others to discover the true
nature of the work. These trawling techniques are described in Chapter 5,
Investigating the Work.

Trawling means discovering the requirements. The business analysts sit
with the IceBreaker technicians as they describe the work they currently
do, and their aspirations for work they hope to do. The business analysts

It is always better
to get an idea of
the downside of
the project (its risk
and cost) before
being swept away
by the euphoria of
the benefits that
the new product is
intended to bring.

READING
DeMarco, Tom, and Tim
Lister. Waltzing with Bears:
Managing Risk on Software
Projects. Dorset House,
2003.

McConnell, Steve. Software
Estimation: Demystifying the
Black Art. Microsoft Press,
2006.

Refer to Chapter 4 for a
discussion of business
events and business
use cases, and an
exploration of how you
might use them.

Refer to Chapter 5,
Investigating the
Work, for details of the
trawling activity.

18 ● Chapter 2 The Requirements Process

also consult with other interested stakeholders and subject-matter experts—
experts on usability, security, operations, management, and so on—to dis-
cover other needs for the eventual product. The IceBreaker business analysts
spent a lot of time with the meteorologists and the highway engineers.

Perhaps the most difficult part of requirements investigation is uncover-
ing the essence of the system. Many stakeholders inevitably talk about their
perceived solution to the problem or express their needs in terms of the cur-
rent implementation. The essence, by contrast, is the underlying business
reason for having the product. Alternatively, you can think of it as the policy
of the work, or what the work or the business rule would be if it could exist
without any technology (and that includes people). We will have more to
say about the essence of the system in Chapter 7, Understanding the Real
Problem.

Once they understand the essence of the work, the analysts get together
with the key stakeholders to decide the best product to improve this work.
That is, they determine how much of the work to automate or change, and
what effect those decisions will have on the work. Once they know the
extent of the product, the requirements analysts write its requirements. We
illustrate this process in Figure 2.3.

The IceBreaker product must not be a simplistic automation of the work as
it is currently done; the best of our automated products are not mere imita-
tions of an existing situation. To deliver a truly useful product, the analyti-
cal team must work with the stakeholders to innovate—that is, to develop
a better way to do the work, and a product that supports this better way of
working. They make use of innovation workshops where the team uses cre-
ative thinking techniques and innovative triggers to generate new and better
ideas for the work and the eventual product.

Figure 2.3

The blastoff determines
the scope of the work
to be improved. The
business use cases are
derived from the scope.
Each of the business
use cases is studied
by the requirements
analysts and the
relevant stakeholders
to discover the desired
way of working. When
this is understood, the
appropriate product
can be determined
(the PUC scenario) and
requirements or user
stories written from it.

Business
Use Cases

1.
2.
3.
4.
5.
6.

PUC Scenario
1.
2.
3.
4.
5.

Requirement

User Story

We look at developing
innovative products in
Chapter 8, Starting the
Solution.

READING
Maiden, Neil, Suzanne
Robertson, Sharon
Manning, and John
Greenwood. Integrating
Creativity Workshops into
Structured Requirements
Processes. Proceedings of
DIS 2004, Cambridge,
Mass. ACM Press.

Michalko, Michael.
Thinkertoys: A Handbook of
Creative-Thinking Techniques,
second edition. Ten Speed
Press, 2006.

Robertson, Suzanne,
and James Robertson.
Requirements-Led Project
Management. Addison-
Wesley, 2005.

 Quick and Dirty Modeling ● 19

Quick and Dirty Modeling

Models can be used at any time in the Volere life cycle; in Figure 2.1, we show
this activity as “Prototype the Work.” There are, of course, formal models
such as you would find in UML or BPMN, but a lot of the time business
analysts can make productive use of quick sketches and diagrams to model
the work being investigated. One quick and dirty modeling technique we
should mention here is using Post-it notes to model functionality; each note
can be used to represent an activity, and the notes can be rapidly rearranged
to show different ways the work is done or could be done. We find that
stakeholders relate to this way of modeling their business processes, and are
always willing to participate with hands-on manipulation of the Post-its to
show what they think the work should be. We discuss this kind of modeling
more fully in Chapter 5, Investigating the Work.

In Chapter 8, Starting the Solution, we examine how you move into an
implementation of the requirements discovered so far. At this point, your
models change from being something to explain the current work, to some-
thing to explain how the future product will help with that work.

We can now start to refer to this type of model as a prototype—a quick
and dirty representation of a potential product using pencil and paper, white-
boards, or some other familiar means, as shown in Figure 2.4. Prototypes
used at this stage are intended to present the user with a simulation of the
requirements as they might be implemented. The IceBreaker business ana-
lysts sketch some proposed interfaces and ways that the needed functional-
ity might be implemented—this visual way of working allows the engineers
and other stakeholders to c oalesce their ideas for the future product.

Figure 2.4

A quick and dirty
prototype built on a
whiteboard to provide a
rapid visual explanation
of how some of the
requirements might be
implemented, and to
clarify misunderstood or
missing requirements.

20 ● Chapter 2 The Requirements Process

Scenarios

Scenarios are so useful that we have devoted the whole of Chapter 6 to them.
Scenarios show the functionality of a business process by breaking it into a
series of easily recognizable steps, written in English (or whatever language
you use at work) so that they are accessible to all stakeholders. The IceBreaker
analysts used scenarios to describe the business processes and present their
understanding of the needed functionality. These scenarios were then
revised as needed—different stakeholders took an interest in different parts
of the scenario, and after a short time, the business analysts were able to have
everyone understand and come to a consensus on what the work was to be.

Once they are agreed, the scenarios become the foundation for the
requirements.

Writing the Requirements

A major problem in system development is misunderstood requirements. To
avoid any misunderstanding, the analysts must write their requirements in
an unambiguous and testable manner, and at the same time ensure that the
originating stakeholder understands and agrees with the written require-
ment before it is passed on to the developers. In other words, the analysts
write the requirements so as to ensure that parties at either end of the devel-
opment spectrum are able to have an identical understanding of what is
needed.

Although the task of writing down the requirements might seem an oner-
ous burden, we have found it to be the most effective way to ensure that the
essence of the requirement has been captured and communicated, and that
the delivered product can be tested. (See Figure 2.5.)

Refer to Chapter 6 for a
discussion about using
scenarios.

Figure 2.5

The requirements are
captured in written form
to facilitate communica-
tion between the stake-
holders, the analysts,
and the developers (and
anyone else who has an
interest). By writing the
requirements carefully,
the team ensures that
the correct product is
built.

I want it easy enough so
my mother could use it.

The developer doesn’t know
your mother. How about “A
truck driver shall be able to
select the correct route
within 90 seconds of first
encountering the product” ?

 Writing the Requirements ● 21

The IceBreaker analysts start by writing their requirements using business
language so that the nontechnical stakeholders can understand them and
verify their correctness. They add a rationale to the requirements—it shows
the background reason for the requirement, which removes much of the
ambiguity. Further, to ensure complete precision and to confirm that the
product designers and developers can build exactly what the stakeholder
needs, they write a fit criterion for each requirement. A fit criterion quanti-
fies, or measures, the requirement, which makes it testable, which in turn
allows the testers to determine whether an implementation meets—in other
words, fits—the requirement.

The rationale and the fit criterion make the requirement more under-
standable for the business stakeholder, who has on several occasions said, “I
am not going to have any requirements that I do not understand, nor will I
have any that are not useful or that don’t contribute to my work. I want to
understand the contributions that they make. That’s why I want each one to
be both justified and measurable.”

The business analyst has a different, but complementary, reason for mea-
suring requirements: “I need to ensure that each requirement is unambigu-
ous; that is, it must have the same meaning to both the stakeholder who
originated it and the developer who will build it. I also need to measure the
requirement against the stakeholder’s expectations. If I can’t put a measure-
ment to it, then I can never tell if we are building the product the stakeholder
really needs.”

The analysts use two devices to make it easier to write their specifica-
tion. The first device, the requirements specification template, is an outline and
guide to writing a requirements specification. The business analysts use it as
a checklist of the requirements they should be asking for, and as a consistent
way of organizing their requirements documents. The second device is a
shell, also known as a snow card. Each atomic (that’s the lowest level) require-
ment is made up of a number of attributes, and the snow card is a convenient
layout for ensuring that each requirement has the correct constituents.

Of course, the writing process is not really a separate activity. In reality,
it is integrated with the activities that surround it—trawling, prototyping,
and the quality gateway. However, for the purposes of understanding what
is involved in putting the correct requirements into a communicable form,
we will look at it separately.

Iterative development methods employ user stories as a way of convey-
ing the requirements. The stories are, in fact, placeholders for lower-level
requirements; they are augmented during conversations between the devel-
opers and the stakeholders to flush out the detailed requirements. In Chap-
ter 14, Requirements and Iterative Development, we look closely at how the
business analyst can produce better user stories. Working iteratively does not
obviate the need for requirements, but rather seeks to discover and commu-
nicate the requirements in a different manner.

Chapter 12 describes fit
criteria in detail.

Refer to Chapters 10, 11,
12, and 16 for detailed
discussions of writing
the requirements.

22 ● Chapter 2 The Requirements Process

The primary reason for wanting written requirements is not to have writ-
ten requirements (although that is often necessary), but rather to write them.
Writing the requirement, together with its associated rationale and fit crite-
rion, clarifies it in the writer’s mind, and sets it down in an unambiguous
and verifiable manner. To put that another way, if the business analyst can-
not correctly write the requirement, he has not yet understood it.

Quality Gateway

Requirements are the foundation for all that is to follow in the product devel-
opment cycle. Thus it stands to reason that if the right product is to be built,
the requirements must be correct before they are handed over to the build-
ers. To ensure correctness, the quality gateway tests the requirements (Figure
2.6). The IceBreaker team has set up a single point that every requirement
must pass through before it can become a part of the specification. This
gateway is manned by two people—the lead requirements analyst and a tes-
ter—and they are the only people authorized to pass requirements through
the gateway. Working together, they check each requirement for complete-
ness, relevance, testability, coherency, traceability, and several other quali-
ties before they allow it to be passed to the developers.

By ensuring that the only way for requirements to be made available for
the developers is for those requirements to pass through the quality gateway,
the project team is in control of the requirements, and not the other way
around.

Chapter 13 describes
how the quality gateway
tests the requirements.

Figure 2.6

The quality gateway
ensures that require-
ments are rigorous
by testing each one
for completeness,
correctness, measura-
bility, absence of
ambiguity, and several
other attributes, before
allowing the requirement
to be passed to the
developers.

 Reviewing the Requirements ● 23

Reusing Requirements

The requirements for any product you build are never completely unique.
We suggest that before starting on any new requirements project, you go
through the specifications written for previous projects and look for poten-
tially reusable material. Sometimes you may find dozens of requirements
that you can reuse without alteration. More often you will find requirements
that, although they are not exactly what you want, are suitable as the basis
for some of the requirements you will write in the new project.

For example, in the IceBreaker project, the rules for road engineering
have not changed much over the years. Thus, the requirements analysts
working on various projects do not have to rediscover them, but can simply
reuse them. They also know that the business of vehicle scheduling does not
change radically over time, so their trawling process can take advantage of
some requirements from previous projects.

Similarly, for different projects within your organization, the non-
functional requirements are fairly standard, so you can start with a specifi-
cation from one of the previous projects and use it as a checklist.

The point about reusing requirements is that once a requirement has been
successfully specified for a product, and the product itself is successful, the
requirement does not have to be reinvented or rediscovered. In Chapter 15,
Reusing Requirements, we discuss how you can take advantage of the knowl-
edge that already exists within your organization, and how you can save
yourself time by recycling requirements from previous projects.

Reviewing the Requirements

The quality gateway exists to keep bad requirements out of the specifica-
tion—it does this one requirement at a time. Nevertheless, at the point when
you think your requirements specification is complete (or as complete as you
need it for the next activity), you should review it. This final review checks
that there are no missing requirements, that all the requirements are con-
sistent with one another, and that any conflicts between the requirements
have been resolved. In short, the review confirms that the specification is
really complete and suitable so that you can move on to the next stage of
development.

This review also offers you an opportunity to reassess the costs and risks
of the project. Now that you have a complete set of requirements, you know a
lot more about the product than you did at the project blastoff. In particular,
you have a much more precise knowledge of the scope and functionality of
the product, so this is a good time to remeasure its size. From that size, and
from your knowledge of the project’s constraints and solution architecture,
you can estimate the cost to construct the product.

See Chapter 15 for
more on reusing
requirements.

See Chapter 17,
Requirements
Completeness, for
more on reviewing the
specification.

24 ● Chapter 2 The Requirements Process

You also know at this stage which types of requirements are associated
with the greatest risks. For example, the users might have asked for an inter-
face that your organization has not built before. Or perhaps they want to use
untried technology to build the product. Perhaps the developer might not
have the people with the skills needed to build the product as specified? By
reassessing the risks at this point, you give yourself a more realistic chance
of building the desired product successfully.

Iterative and Incremental Processes

One common misconception in the requirements world is that you have to
gather all the requirements before moving on to the next step of design and
construction. In other words, doing requirements means that you employ a
traditional waterfall process. In some circumstances this is necessary, but not
always. On the one hand, if you are outsourcing or if the requirements docu-
ment forms the basis of a contract, then clearly you need to have a complete
requirements specification. On the other hand, if the overall architecture
is known, then construction and delivery can often begin before all the
requirements are discovered. We show these two approaches in Figure 2.7,
and suggest you consider which one works best for you when working on
your own requirements projects. We also have a lot more to say on various
approaches in Chapter 9, Strategies for Today’s Business Analyst.

On the IceBreaker project, the developers are ready to start building the
product, so after the blastoff the key stakeholders select three (it could be any
low number) of the highest-priority and greatest-value business use cases.
The requirements analysts trawl and gather the requirements for only those

Figure 2.7

Two (of many) variations
on development life
cycles. At the top of the
figure is the traditional
waterfall approach, in
which the complete
requirements document
is put together before
product development
begins. At the bottom of
the figure is an iterative
process, in which, after a
preliminary analysis, the
product is developed in
small increments. Both
approaches achieve the
same purpose.

Initial
Concept

Finished
Product

Finished
Product

Write
Requirements

Investigate
the work

Completed
Requirements
Document

Develop
the code

Develop
Partial
Product

Product
Owner

Stories

FeedbackInitial
Concept

Preliminary
business
analysis

Traditional Waterfall

Iterative

 Requirements Retrospective ● 25

business use cases, putting aside the rest of the work for now. Then, when
the first tranche of requirements have successfully passed the quality gate-
way, the developers start their work. The intention is to implement a small
number of use cases as early as possible to get the reaction of the stake-
holders—if there are going to be any nasty surprises, the IceBreaker team
wants to get them as early as possible. While the developers are building and
delivering the first lot of business use cases, the analysts are working on the
requirements for the next-highest-priority ones. Soon they have established
a rhythm for delivery, with new use cases being implemented and delivered
every few weeks.

Requirements Retrospective

You are reading this book about a requirements process, presumably with
the intention of improving your own process. Retrospectives, sometimes
known as lessons learned, are one of the most effective tools for discovering
the good and bad of a process, and suggesting remedial action. Retrospec-
tives for requirements projects consist of a series of interviews with stake-
holders and group sessions with the developers. The intention is to canvas
all the people involved in the project and ask these questions:

 ● What did we do right?

 ● What did we do wrong?

 ● If we had to do it again, what would we do differently?

By looking for honest answers to these questions, you give yourself the best
chance of improving your process. The idea is very simple: Do more of what
works and less of what doesn’t.

Keep a record of the lessons learned from your retrospectives. While
humans have memory and can learn from their experience to their advan-
tage in future projects, organizations don’t learn—unless you write down the
experience. By keeping the lessons learned available in some readily acces-
sible manner, subsequent projects can learn from your accomplishments and
mishaps.

Your retrospective can be very informal : a coffee-time meeting with the
project group, or the project leader collecting e-mail messages from the par-
ticipants. Alternatively, if the stakes are higher, this process can be formal-
ized to the point where it is run by an outside facilitator who canvases the
participants, both individually and as a group, and publishes a retrospective
report.

The most notable feature of retrospectives is this: Companies that regu-
larly conduct retrospectives consistently report significant improvements in
their processes. In short, retrospectives are probably the cheapest investment
you can make in improving your own process.

“If we did the
project again
tomorrow, what
would we do
differently?”

26 ● Chapter 2 The Requirements Process

Evolution of Requirements

You start a project with little more than a vision—and sometimes a fairly
blurred vision—of the desired future state of your owner’s work. (As we have
done elsewhere in this book, we use the term “work” to refer to the area of
the owner’s organization where improvements are to be made, usually by
automating or re-automating part of it.)

During the early stages of requirements discovery, analysts deploy models
of varying degrees of formality to help them and the stakeholders to learn
what the work is, and what it is to be. From this investigation of the work,
everyone arrives at the same level of understanding such that the stakehold-
ers find improvements that will be truly beneficial.

It helps enormously when coming to an understanding of the work if
the analysts and stakeholders can see the essence of the work. The essence
is an abstraction of the work that sees the underlying policy of the work
without the technology that clouds our vision of what the work actually is.
This “thinking above the line,” as we call it in Chapter 7, Understanding the
Real Problem, is important if the requirements are not to merely replicate
whatever it is that exists at the moment, and if “technological fossils” and
inappropriate process are not to be inadvertently reimplemented.

The understanding of the work evolves and matures, and at some point
it is possible for the stakeholders, guided by the business analysts and the
systems architects, to determine the optimal product to improve that work.
When this stage is reached, the business analysts determine the detailed
functionality for the product (keep in mind that not all of the work’s func-
tionality would be included in the product) and to write its requirements.
The non-functional requirements are derived at roughly the same time and
written along with those constraints that are not already recorded. At this
point, the requirements are written in a technologically neutral manner—
they specify what the product has to do for the work, but not how the tech-
nology will do it.

You can think of these requirements as “business requirements,” meaning
that they specify the product needed to support the business. Once they are
adequately understood, they are released to the designer, who adds the prod-
uct’s technological requirements before producing the final specification for
the builders. This process is illustrated in Figure 2.8.

We have said that the requirements evolve, but this process should not
be thought of as an inexorable progression toward some known destination.
As Earl Beede points out, every time you think of a solution, it causes some
new problems that require you to backtrack and revisit some of your earlier
work. When we are talking about a requirements process, keep in mind that
the process, if it is to be useful, must allow you to move backward as well
as forward. Naturally, you would like to spend most of your time moving

 The Template ● 27

forward, but don’t be too disappointed if you have to return to some things
you thought you had put behind you.

The Template

It is easier to write requirements, and far more convenient, if you have a
guide to writing them. Appendix A of this book provides The Volere Require-
ments Specification Template, which is a complete blueprint for describing
your product’s functionality and capabilities. This template, which is a dis-
tillation of literally hundreds of requirements specifications, is in use by
thousands of organizations all over the world.

It is convenient to categorize requirements into several types—each of the
template’s sections describes a type of requirement and its variations. Thus,
as you discover the requirements with your stakeholders, you add them to
your specification, using the template as a guide to necessary content.

The template is designed to serve as a sophisticated checklist, providing
you with a list of what to write about, and suggestions on how to write about
them. The table of contents for the template is reproduced here, and we will
discuss each section in detail later in the book.

Our associate, Stephen Mellor, suggests using the template by going
directly to the most pressing sections—the ones that seem to you to be most

The complete Volere
Requirements Specifica-
tion Template is found in
Appendix A.

Figure 2.8

The requirements evolve
as development of the
product progresses.
They start out as
fairly vague ideas as
the analysts and
stakeholders explore
the work area. As the
ideas for the product
emerge over time,
the requirements
become precise and
testable. They remain
technologically neutral
until the designer
becomes involved
and adds those
requirements needed
to make the product
work in its technological
environment.

Business
Use Cases

1.
2.
3.
4.
5.
6.

Scenario
1.
2.
3.
4.
5.

Understanding
the work

ConstraintFunctional
Requirement

Non-functional
Requirement Understanding

the product

Technological
requirements System or

Software
Specification

28 ● Chapter 2 The Requirements Process

useful—and then revisiting the template as needed. You will probably use
most of it, but it is not—really not—a template that you fill by starting on
page one and working through to the bitter end. Like any good tool, when
used wisely the template provides a significant advantage to your require-
ments discovery.

Here, then, is the content of the template.

Project Drivers—reasons and motivators for the project

1 The Purpose of the Project—the reason for making the investment
in building the product and the business advantage that you want to
achieve by doing so

2 The Client, the Customer, and Other Stakeholders—the people
with an interest in or an influence on the product

3 Users of the Product—the intended end users, and how they affect
the product’s usability

Project Constraints—the restrictions on the project and the product

4 Requirements Constraints—the limitations on the project, and the
restrictions on the design of the product

5 Naming Conventions and Definitions—the vocabulary of the
project

6 Relevant Facts and Assumptions—outside influences that make
some difference to this product, or assumptions that the developers
are making

Functional Requirements—the functionality of the product

7 The Scope of the Work—the business area or domain under study

8 The Scope of the Product—a definition of the intended product
boundaries and the product’s connections to adjacent systems

9 Functional and Data Requirements—the things the product must
do and the data manipulated by the functions

Non-functional Requirements—the product’s qualities

10 Look and Feel Requirements—the intended appearance

11 Usability and Humanity Requirements—what the product has to be
if it is to be successfully used by its intended audience

12 Performance Requirements—how fast, big, accurate, safe, reliable,
robust, scalable, and long-lasting, and what capacity

 The Snow Card ● 29

13 Operational and Environmental Requirements—the product’s
intended operating environment

14 Maintainability and Support Requirements—how changeable the
product must be and what support is needed

15 Security Requirements—the security, confidentiality, and integrity
of the product

16 Cultural Requirements—human and sociological factors

17 Legal Requirements—conformance to applicable laws

Project Issues—issues relevant to the project that builds the product

18 Open Issues—as yet unresolved issues with a possible bearing on the
success of the product

19 Off-the-Shelf Solutions—ready-made components that might be
used instead of building something from scratch

20 New Problems—problems caused by the introduction of the new
product

21 Tasks—things to be done to bring the product into production

22 Migration to the New Product—tasks to convert from existing
systems

23 Risks—the risks that the project is most likely to incur

24 Costs—early estimates of the cost or effort needed to build the product

25 User Documentation—the plan for building the user instructions
and documentation

26 Waiting Room—requirements that might be included in future
releases of the product

27 Ideas for Solutions—design ideas that we do not want to lose

Browse through the template in Appendix A before you go too much fur-
ther in this book. You will find a lot of information about writing require-
ments, plus much food for thought about the kinds of requirements you are
looking for.

Throughout this book, we will refer to requirements by their type—that
is, one of the types as shown in the template’s table of contents.

The Snow Card

Whereas the template is a guide to what to write about, the snow card is a
guide to how to write it. Individual requirements have a structure—a set of
attributes, where each attribute contributes something to your understanding

30 ● Chapter 2 The Requirements Process

of the requirement, and to the precision of the requirement, and thereby to
the accuracy of the product’s development.

Before we go any further, we must point out that although we call this
device a card, and we use cards in our courses, and this book is sprinkled
with diagrams featuring this card, we are not advocating writing all your
requirements on cards. Some good things can be realized by using cards
when interviewing stakeholders and quickly scribbling requirements as they
come to light. Later, these requirements are recorded in some electronic
form; at that time, their component information is filled in. Thus any refer-
ence to “card” should be taken to mean (probably) a computerized version.

At first glance, the card might seem rather bureaucratic. (See Figure 2.9.)
We are not seeking to add to your requirements burden, but rather to pro-
vide a way of accurately and conveniently gathering the needed informa-
tion—each of the attributes of the snow card makes a contribution. We shall
explain these as we work our way through this book.

Any number of
automated tools
are available
for recording,
analyzing,
and tracing
requirements.

Figure 2.9

The requirements shell
or snow card, consisting
of a 5-inch by 8-inch
card, printed with the
requirement’s attributes,
that is used for our
initial requirements
gathering. Each of the
attributes contributes
to the understanding
and testability of the
requirement. Although a
copyright notice appears
on the card, we have no
objections to any reader
making use of it for his
or her requirements
work, provided the
source is acknowledged.

 Your Own Requirements Process ● 31

Your Own Requirements Process

The itinerant peddler of quack potions, Doctor Dulcamara, sings the praises
of his elixir—it is guaranteed to cure toothache, make you potent, eliminate
wrinkles and give you smooth beautiful skin, destroy mice and bugs, and
make the object of your affections fall in love with you. This rather fanciful
libretto from Donizetti’s opera L’elisir d’amore points out something that,
although very obvious, is often disregarded: There is no such thing as the
universal cure.

We really would like to be able to present you with a requirements process
that has all the attributes of Doctor Dulcamara’s elixir—a process that suits
all projects for all applications in all organizations. We can’t. We know from
experience that every project has different needs. However, we also know
that some fundamental principles hold good for any project. So instead of
attempting to provide you with a one-size-fits-all magic potion, we have dis-
tilled our experiences from a wide variety of projects to provide you with a
set of foundation activities and deliverables that apply to any project.

The process described in this book is made up of the things you have to
do to successfully discover the requirements. Likewise, the deliverables pre-
sented here are the foundation for any kind of requirements activity. Our
intention is not to say that there is only one true path to requirements Nir-
vana, but rather to give you the components you need for successful require-
ments projects.

As you read this book, think about how you can use these components
within the constraints of your own culture, your own environment, your own
organizational structure, and your own chosen way of product development.

To adapt this process, you should understand the deliverables it pro-
duces—the rest of this book will discuss these items in detail. Once you
understand the content and purpose of each deliverable, ask how each one
(provided it is relevant) would best be produced within your project environ-
ment using your resources:

 ● What is the deliverable called within your environment? Use the defi-
nitions of the terms used in the generic process model and identify
the equivalent deliverable in your organization.

 ● Is this deliverable relevant for this project?

 ● How much do you already know about this deliverable? Do you know
enough to be able to avoid devoting additional time to it?

 ● Who produces the deliverable? Understand which parts of the deliver-
able are produced by whom. Also, when several people are involved,
you need to define the interfaces between them.

 ● When is the deliverable produced? Map your project phases to the
generic process.

We have distilled
experience from
a wide variety of
projects to provide
you with a set of
foundation activities
and deliverables
that apply to any
project.

READING
Brooks, Fred. No Silver
Bullet: Essence and Accidents
of Software Engineering,
and “No Silver Bullet
Refired.” The Mythical Man-
Month: Essays on Software
Engineering, twentieth
anniversary edition.
Addison-Wesley, 1995.
This is possibly the most
influential book on software
development; it certainly is
timeless.

32 ● Chapter 2 The Requirements Process

 ● Where is the deliverable produced? A generic deliverable is often the
result of fragments that are produced in a number of geographical
locations. Define the interfaces between the different locations and
specify how they will work.

 ● Who needs to review the deliverable? Look for existing cultural
checkpoints within your organization. Do you have recognized stages
or phases in your projects at which peers, users, or managers must
review your specification?

The generic model describes deliverables and procedures for producing
them; our intention is that you decide how you use them.

We also point you to Chapter 9 of this book, entitled Strategies for Today’s
Business Analyst. This chapter considers how you might approach your
requirements projects. We suggest that before you become too involved in
the mechanics of requirements discovery, you think about the strategy that
is most suitable for you.

Formality Guide

There is every reason to make your requirements discovery and communica-
tion as informal as possible. We say “as possible” because it is not so much
what you would like as what your situation demands—often the degree of
formality will be dictated by factors beyond your control. For example, you
may be developing software using contracted outsourced development. In
this case, there is a clear need for a complete written requirements specifica-
tion. In other cases, the way you communicate your requirements can be
informal to the point that a portion of the requirements are not written, or
partially written, and communicated verbally.

We have included a formality guide to suggest where you might take a
more relaxed approach to recording requirements, as well as those times
when you should rightly be more systematic with your requirements discov-
ery and communication. These are the conventions you will encounter as
you move through this book.

Rabbit—small, fast, and short-lived. Rabbit projects are typically smaller
projects with shorter lifetimes, where close stakeholder participation is pos-
sible. Rabbit projects usually include a lesser number of stakeholders.

Rabbit projects are usually iterative. They discover requirements in small
units (probably one business use case at a time) and then implement a small
increment to the working functionality, using whatever has been imple-
mented to solicit feedback from the stakeholders.

Rabbit projects do not spend a great deal of time writing the require-
ments, but use conversations with the stakeholders as a way to elaborate

 The Rest of This Book ● 33

the requirements written on story cards. Rabbit projects almost always co-
locate the business knowledge stakeholders with the business analysts and
the developers.

Horse—fast, strong, and dependable. Horse projects are probably the
most common corporate projects—they are the “halfway house” of formal-
ity. Horse projects need some formality—it is likely that there is a need for
written requirements so that they can be handed from one department to
another. Horse projects have medium longevity and involve more than a
dozen stakeholders, often in several locations, factors that necessitate con-
sistently written documentation.

If you cannot categorize your own project, think of it as a horse.

Elephant—solid, strong, long life, and a long memory. An elephant proj-
ect has a need for a complete requirements specification. If you are outsourc-
ing the work, or if your organizational structure requires complete, written
specifications, you’re an elephant. In certain industries, such as pharmaceu-
ticals, aircraft manufacture, or the military, regulators demand not only that
full specifications be produced, but also that the process used to produce
them be documented and auditable. Elephant projects typically have a long
duration, and they involve many stakeholders in distributed locations. There
are also a large number of developers, necessitating more formal ways of
communicating.

The Rest of This Book

We have described—briefly—a process for discovering, communicating, and
verifying requirements. The remainder of this book describes the various
activities in this process, along with their deliverables, in some detail. Feel
free to jump to any chapter that is of immediate concern—we wrote the
chapters in more or less the order in which you would do each of the activi-
ties, but you don’t have to read them that way.

And please, while you are reading this book, be constantly asking yourself
how you will do the things we describe. After all, it is you who has to do them.

We hope find useful ideas, processes and artifacts, in the rest of this book.
We also hope you enjoy reading and using it.

This page intentionally left blank

 523

Index

A

Abbreviations, 415–416
Abstraction

Brown Cow Model, 153–154
patterns from, 346–351
problem determination, 147–149
for requirements, 316, 342
reusable requirements, 106–107
in trawling, 99, 125–126

Acceptance, usability for, 253
Access requirements, 263, 451–452
Accessibility requirements

fit criteria for, 292
in usability, 256, 441

Accuracy
patterns for, 342
requirements, 258, 443–444

Achievable goals, 57
Acronyms, 415–416
Actions

fit criteria, 297–298
functional requirements, 295–296

Active adjacent systems, 190–192
Active stakeholders, 134, 144
Activities in strategies, 204
Activity diagrams

functional requirements, 240
scenarios, 138–139

Actors
business use cases, 70, 84
operational requirements, 260

Adaptability requirements, 450–451
Addiction to connections, 185
Adjacent systems, 190

active, 190–192
autonomous, 192–193
in business use cases, 71
cooperative, 193–194
in function point counting, 490

interfacing with, 447–448
legal requirements, 269
in operational requirements, 260, 447–448
and scope, 43
as stakeholders, 53–54

Adjectives, 388
Adjustments in function point counting, 492
Adobe Photoshop usability, 254
Adoption, usability for, 256
Advantage in PAM technique, 399–400
Advantages, Limitations, Unique Quantities

and overcome (ALUo) management
technique, 64

Adverbs, 388
Affordable Care Act, 270
Aggregation in systemic thinking, 162
Agile techniques

iterative development, 323–324
in problem determination, 153

Air traffic control systems, 172
Airlines

cargo, 260–261
check-in agent scenario, 131–140

Alexander, Christopher, 281, 343–344
Alexander, Ian, 44, 142
Alfresco system, 115
Allowable values, requirements for, 258
Alternatives

functional requirements, 233–234, 238–241
Quality Gateways, 320–321
scenarios for, 139–140, 145

ALUo (Advantages, Limitations, Unique
Quantities and overcome) management
technique, 64

Amazon
1-click feature, 233
convenience, 161
future of books, 158–159
non-functional requirements, 246

524 ● Index

Ambiguity
in functional requirements, 234–237
reviews for, 388

Analysis Artifacts activity, 325
Analysis Backlog activity, 325
Analysts

apprenticeships for, 98–99
for scope, 16
for trawling, 91–92
writing by, 20

Analytical knowledge in iterative development,
334

Analyze Business Needs activity, 324–325
“And no more” requirements, 265–266
Antagonists in negative scenarios, 142–143
Anticipated environments

constraints from, 412
for new products, 461–462

Appearance requirements, 435
Apprentices, 17, 98–99
ART-SCENE scenario presenter, 141
Artifacts

in apprentices, 99
in domain patterns, 350
in functional requirements, 225
murder books, 120
in prototyping, 111
retaining, 124
for stakeholder interviews, 103

Asimov, Isaac, 258
Assembling specification templates, 365–366
Associations, 495, 505–508
Assumptions

in blastoff, 37
constraints as, 169
in reusing requirements, 339
risk analysis, 390
in specification templates, 418–419
of usability, 253

Atomic Requirement knowledge class, 496–497
Atomic requirements

attributes, 361–365
discovering, 359–361
external strategy, 208–209
in functional requirements, 238
prioritizing, 383

“Attending exquisitely,” 106
Attributes

atomic requirements, 361–365
business use cases, 378–380, 489
classes, 483
completeness tests for, 311–312
stored data, 489–491
user categories, 49–50

Auditing requirements, 265, 273, 454
Authority, 295–296
Authorization, 263
Automated tools

for Quality Gateway, 320
for scenarios, 141
specification templates, 366–367

Autonomous adjacent systems, 192–193
Availability requirements, 258, 263, 444–445

B

Babbage, Charles, 4
Background in specification templates, 397–398
Baker, Jenny, 341
Bang measuring method, 481
Beck, Kent, 280
Beede, Earl, 26, 196, 277
Benchmarks, 61
Benefits in solutions, 194–195
Beyer, Hugh, 98, 113, 131
Blastoff, 15–17, 35–37

constraints in, 37
costs, 17
go/no go decisions, 17, 37
meetings, 64–65
naming conventions and definitions, 37
purpose determination, 36
risks, 37
scope, 36
stakeholders, 37
for trawling, 92

Blogs
for non-functional requirements, 271
for trawling, 122

Book selling, 158–159
Boundaries

product, 180–181
scope, 429–431

BPMN (Business Process Modeling Notation), 139
Brainstorming

overview, 173–174
videos for, 121

Branding standards
company colors for, 290
in look and feel requirements, 251

Breakout conditions
external strategy, 206–209
knowledge requirements for, 205–206

Brokers, idea, 219–220
Brooks, Fred, 8
Brown Cow Model, 149–150

abstraction, 153–154
essence, 150–153

 Index ● 525

future view, 157–160, 174–175
for interviews, 105
overview, 93–97
solutions, 177–178
swim lanes, 154–156

Buddy pairing approach, 321
Budgets

as constraints, 414
requirements creep from, 318–319

Building activity
external strategy, 208–209
iterative strategy, 214

Business analysts for trawling, 91–92
Business boundary association, 505
Business data models

in risk analysis, 390
in specification templates, 427

Business Event knowledge class, 497–498
Business events

atomic requirements, 361–362
benefits, 75–78
business use cases, 73–80
for cost estimates, 61
finding, 78–80
identifying, 377–378
innovation workshops, 172
iterative development, 324–325
origins, 189–190
patterns, 344–346
prioritizing, 217
product use case, 197
in scenario templates, 144
time-triggered, 74–75
video, 121
in work partitioning, 422–423

Business knowledge in iterative development,
333–334

Business Process Modeling Notation (BPMN),
139

Business process models, 240–241
Business relevancy association, 356, 506
Business requirements, 7–8, 26
Business responding association, 506
Business rules

business use case workshops, 101–102
looking for, 218–219
maintainability requirements, 261
specification templates, 417–418

Business tolerances
for fit criteria, 284–285
in subjective tests, 289

Business tracing association, 506
Business Use Case knowledge class, 498–499

Business use cases (BUCs), 67
actors, 84
adjacent systems in, 71
atomic requirements, 361–362
benefits, 75–78
business rules, 219
completeness reviews for, 376–382
CRUD check for, 380–381
custodial processes, 381–382
data for, 378–380
events, 73–82, 377–378
formality guide for, 69
in function point counting, 483–488
functional needs, 179
input, 484–485
iterative strategy, 211, 327–328, 382
low-fidelity prototypes for, 112
modeling, 378–380
output, 485–487
outside world in, 72–73
patterns, 342
product use cases in, 82–84
and scenarios, 130–131, 133, 144
scope, 70–73, 82–83, 375, 377
time-triggered, 487–488
in trawling, 17, 92
user stories, 329–330
in value, 166
videos for, 121
work in, 67–69
workshops, 99–102, 121

Business value analysis, 327–328

C

Cameras, 161
Capabilities

document archeology for, 124
templates for, 27

Capacity requirements, 257, 445–446
Cargo airlines, 260–261
Case study in scoping business problem, 41–43
CATWOE (Customers, Actors, Transformation

processes, World view, Owners, and
Environment) management technique, 64

Challenging constraints, 169–171
Change, requirements creep from, 319
Character of products, 248
Check-in agents, 131–140
Checklists

completeness reviews, 374
exceptions, 141
Quality Gateways, 321

526 ● Index

Checklists (continued)
requirement types, 249
specifications, 21
templates as, 27, 247, 274
users, 49–50

Chesterton, G. K., 127
Choices, scenarios for, 139–140
Christensen, Clayton, 159
Class diagrams, 231–232
Classes

attributes, 483
for business use cases, 379–380
Volere Requirements Process Model, 495

Clausing, Don, 180
Clients

non-functional requirements, 275–276
reusing requirements, 339
risk analysis, 389
specification templates, 400

Collaborating systems and applications
constraints from, 410
fit criteria for, 293
in operational requirements, 261

Collections of requirements, 343–344
Color

in branding, 290
measuring, 285
in mind maps, 118

Commercial off-the-shelf software
as constraint, 59, 410–411
functional requirements for, 241–242
in specification templates, 458–460

Communicating requirements, 20–22, 353
formality guide, 353–354
knowledge vs. specification, 353–357
potential requirements, 354

Communication knowledge in iterative
development, 334

Company colors, 290
Completeness requirements, 23–24, 371–372

for ambiguity, 388
business use cases, 375–382
for conflicts, 386–388
cost measurements, 391
formality guide, 372–373
inspections for, 373–374
missing requirements, 374–375
patterns, 342
prioritizing requirements, 382–386
risk assessment, 388–390
specifications, 373
testing, 311–312

Completion of actions, 295
Compliance requirements, 455–456

Conception activity
external strategy, 206–207
iterative strategy, 210, 213

Conditional functional requirements, 234
Conditions in fit criteria, 297–298
Conflicts

atomic requirements, 364–365
completeness reviews for, 386–388

Connections, innovation, 185–186
Connelly, Michael, 119
Consistency in terminology, 313–314
Constraint knowledge class, 499
Constraints, 11, 59–60

blastoff, 37
challenging, 169–171
from environment, 412
fit criteria for, 300
mandated, 339, 390, 407–415
off-the-shelf products, 59, 410–411
project, 60
in reusing requirements, 339
in risk analysis, 390
in scenarios, 135
solutions, 59, 200
in specification templates, 28, 358–359,

407–415
viability within, 314–315

Construction activity
external strategy, 209
iterative strategy, 212

Consultants
for security, 266
as stakeholders, 51

Containing businesses, 45
Content management systems, 115–116
Context

business use cases, 70–72
event responses, 344–345
patterns, 344–345
process in, 14–15
scope, 42–43, 420–421
stakeholder interviews, 103

Context diagrams, 16, 41–43
business events, 78–79
flows, 482
functional requirements, 242

Context flows in Quality Gateways, 307–308
Convenience

innovation, 184–185
paying for, 160–162

Cooper, Alan, 167
Cooperative adjacent systems

in function point counting, 490
overview, 193–194

 Index ● 527

Copyable products, 459–460
Copyright notices, 269
Core teams

in stakeholder maps, 45
as stakeholders, 51–52

Costs
blastoff, 17, 37
error repair, 306
review process, 23
scoping, 61–62
solutions, 194–195
specification templates, 467–468
value, 165–166

Create step in CRUD checks, 380–381
Creativity in brainstorming, 174
Creep, requirements, 317–319
CRUD checks, 380–381
Cultural issues and requirements

fit criteria, 294–295
overview, 266–268
product use case, 273
specification templates, 454–455
stakeholders, 53

Current situation and environment
implementation environment, 409
new products, 460
in scope, 420
in trawling, 94–97

Custodial processes, 381–382
Customer recognition, company colors for, 290
Customer satisfaction

atomic requirements, 363–364
Quality Gateway for, 316–317

Customers
expression of requirements, 6–7
reusing requirements, 339
risk analysis, 389
specification templates, 401
as stakeholders, 47–48
value and satisfaction of, 316–317

Customers, Actors, Transformation processes,
World view, Owners, and Environment
(CATWOE) management technique, 64

Customs in cultural requirements, 266–268,
454–455

D

Data
business event patterns, 345–346
business use cases, 379–380
in functional requirements, 231–233
models, 231–232

new systems, 465
stored in function point counting, 482–483,

489–492
Data definitions in fit criteria, 297
Data dictionaries

in functional requirements, 232–233
risk analysis, 390
specification templates, 416, 427–429

Data element types, 488
Data flows in Quality Gateways, 307–308
Data models

risk analysis, 390
specification templates, 425–427

Data Protection Act, 271
Data requirements in specification templates,

433–434
David, Elizabeth, 341
Dead Fish projects, 63–64
Decibels, 285
Decision tables in fit criteria, 297–298
Decisions in activity diagrams, 139
Definitions

requirements, 211–212
reusing requirements, 339
scoping, 60–61
specification templates, 415–416

DeGrace, Peter, 121
Delete step in CRUD checks, 380–381
Deliverables

blastoff for, 36
understanding, 31–32

DeMarco, Tom, 479, 481
Descriptions

ambiguous, 388
atomic requirements, 362
and fit criteria, 283
in functional requirements, 229–231, 237
vs. measurements, 279

Design decisions, documenting, 195–196
Designing user experience, 183–184
Detail in functional requirements, 228–229
Development Backlog activity, 326–327
Development phases in planning, 463
Deviations, exception cases for, 140–141
Diagrams

for business events, 78–79
class, 231–232
context. See Context diagrams
for functional requirements, 240, 242
mind maps, 116–119
for scenarios, 138–139
trawling, 92
use case, 483

528 ● Index

Dictionaries
in functional requirements, 232–233
risk analysis, 390
in specification templates, 415–416, 427–429

Differentiation in solutions, 200
Discretionary money, 160
Discussion forums for trawling, 122
Dissatisfaction rating, 363–364
Divisions in specification templates, 358–359
Document archeology, 123–124
Documentation

design decisions, 195–196
murder books, 119–120
in specification templates, 468–469

Dodd-Frank Wall Street Reform and Consumer
Protection Act, 270

Domains, 341
models, 342
patterns across, 349–351
patterns for, 348–349
in reusing requirements, 351

Downloadable movies, 148
Drivers

risk analysis, 389–390
specification templates, 28, 357–359, 395

Drupal system, 115

E

Ease of use requirements, 254, 437–438
Easy to learn products, 254, 291
EEML (Extended Enterprise Modeling

Language), 399–400
Effects of Quality Gateway, 304–305
Efficiency

requirements, 258
usability for, 253

Effort, estimating, 61–62
Einstein, Albert, 150, 312
Elastic users, 167
Elephant projects, 38

business use cases, 69
communicating requirements for, 354
completeness reviews, 373
description, 33
fit criteria, 280
functional requirements, 225
non-functional requirements, 247
problem determination, 149
Quality Gateway, 305
scenarios, 130
trawling, 89

Engineers for prototypes, 114

Enterprise constraints, 414–415
Entities for business use cases, 379
Environment

constraints from, 409
requirements from, 259–261, 273, 447–449
separating work from, 40–41

Error rates, usability for, 253
Errors in software development, 306
Essence

Brown Cow Model, 150–153
discovering, 18
importance, 26

Essential business solutions, 179–180
Estimates, cost, 17, 37, 315, 467–468
Ethnic groups, 182
Ethnography, 182, 184
Eurocontrol, 172
Events. See Business events
Evolution of requirements, 26–27
Exceptions

completeness reviews, 375
in functional requirements, 233–234
scenarios for, 140–141, 145

Existing procedures, 320. See also Current
situation and environment

Expectation management, 383
Expected physical environment, 447
Experts

domain, 351
as stakeholders, 51, 53
subject-matter, 51, 333

Extended Enterprise Modeling Language
(EEML), 399–400

Extensibility requirements, 446
Extent of products, 180–181
External profiles, 204–205
External strategy, 206–209
External technology in adjacent systems,

190–194
Externally stored data in function point

counting, 490–492
Extreme programming

testing in, 280
user stories, 326

F

Fact/Assumption knowledge class, 499–500
Facts

blastoff for, 37
in reusing requirements, 339
in risk analysis, 390
in specification templates, 416–417

 Index ● 529

Fagan inspections, 373–374
Failure demand, 164
Failures, fit criteria for, 288–289
Family therapy, 125
Fault tolerance requirements, 258, 445
Feasibility studies, 65
Feasible goals, 57
Feature Points, 481
Features

in functional requirements, 237–238
unnecessary, 317

Federal Information Security Management Act
(FISMA), 270

Feedback
innovation workshops, 172
iterative development, 327

Feelings in innovation, 187–188
Ferdinandi, Patricia, 143
Financial beneficiaries, 51
Financial constraints, 60
Financial scandals, 269–270
Finding

business events, 78–80
fit criteria, 284–285
functional requirements, 225–228
non-functional requirements, 271–275

First-cut work context, 42–43
Fit criteria, 279

ambiguous, 388
atomic requirements, 363
finding, 284–285
formality guide, 280
forms, 296–299
for functional requirements, 231, 295–296
measurement scale for, 285–286
for non-functional requirements, 286–288

cultural, 294–295
legal, 295
look and feel, 290–291
maintainability, 294
operational, 293–294
performance, 292–293
product failure, 288–289
security, 294
standards, 289–290
subjective tests, 289
usability and humanity, 291–292

for project purpose, 299–300
purpose of, 21, 280–282
rationale for, 282–284
solution constraints, 300
for testability, 396
testing, 281, 312–313
in use cases, 299

Flows
in business events, 78–80
context diagrams for, 482
Quality Gateways, 307–308
in trawling, 92

Follow-up for new products, 462
Forces in patterns, 344–345
Form in goals, 399–400
Formality guides, 32–33

business use cases, 69
communicating requirements, 353–354
fit criteria, 280
functional requirements, 224–225
non-functional requirements, 246–247
problem determination, 149
Quality Gateway, 304–305
reviewing specifications, 372–373
scenarios, 129–130
scoping business problem, 38
trawling, 89

Formality in Quality Gateway, 320
Formalized requirements, 303
Formalizing user stories, 331–332
Function point counting, 479–481

adjustments in, 492
business use cases, 483–488
for cost estimates, 61–62, 467
help and resources for, 492–494
overview, 481
scope, 481–482
stored data, 482–483, 489–492

Functional beneficiaries, 51
Functional Requirement knowledge class, 500
Functional requirements, 10, 223–224

alternatives to, 233–234, 238–241
ambiguity in, 234–237
conditional, 234
conflicts in, 387
data in, 231–233
descriptions and rationale, 229–231
in essential business, 179
exceptions, 233–234
fit criteria, 295–296
formality guide, 224–225
grouping, 237–238
level of detail, 228–229
vs. non-functional requirements, 248
risk analysis, 390
scope in, 237
specification templates, 28, 358–359,

367–368, 433–434
technological, 237
uncovering, 225–228

Functionality, 26

530 ● Index

Fundamental processes in business use cases,
381

Future-How view in Brown Cow Model, 94, 175,
178–179

Future-What view in Brown Cow Model, 93–94,
150, 157–160, 174–175, 179

G

Geography as trawling consideration, 125
Glossaries, 415–416
Go/no go decisions

blastoff, 17, 37
scoping, 63–64

Goals
aspects, 57–58
blastoff, 17
in domain analysis, 351
measurable, 56–58
overview, 54–55
purpose, 55, 57–58
in specification templates, 398–400
in value, 165

Gold plating, 317
Google, 186
Google Docs, 367
Government as stakeholder, 53
Gramm-Leach-Bliley Act, 270
Granularity

functional requirements, 228–229
user stories, 331

Graphic fit criteria, 297
Graphs in fit criteria, 298
Groups

brainstorming, 173–174
ethnic, 182
functional requirements, 237–238
special-interest, 53

Guard conditions, 139

H

Hands-on users in specification templates,
403–404

Happy case scenarios, 135
Hardware safety requirements, 258
Harmful possibilities, scenarios for, 142–143
Hauser, John, 180
Health Insurance Portability and Accountability

Act (HIPAA), 270
Help for function point counting, 492–494
High-fidelity prototypes, 115–116
High-level requirements, 238

HIPAA (Health Insurance Portability and
Accountability Act), 270

History in atomic requirements, 365
Holtzblatt, Karen, 98, 113, 131
Homonyms, 235–237
Horse projects, 38

business use cases, 69
communicating requirements, 354
completeness reviews, 373
description, 33
fit criteria, 280
functional requirements, 224
non-functional requirements, 247
problem determination, 149
Quality Gateway, 305
scenarios, 129
trawling, 89

How-Now view in Brown Cow Model, 93–97,
131, 135, 150, 157, 174–175

Humanity requirements, 253–257
accessibility, 441
ease of use, 437–438
fit criteria for, 291–292
learning, 439–440
personalization and internationalization,

438–439
understandability and politeness, 440–441

I

Icons for prototypes, 115
Ideas

brainstorming, 173–174
brokering, 219–220
for solutions, 471

Identifying
business events, 376–378
gold plating, 317
stakeholders, 16
users, 48

Identity requirements, 361
Immunity requirements, 266, 454
Implementation environment, constraints from,

409
Implementing association, 507
Incremental improvements, 6–7
Incremental processes, 24–25
Incubation in innovation workshops, 172
Individual product use cases, 432
Industry standard setters, 52–53
Information

innovation, 186–187
requirements knowledge model, 353–357

 Index ● 531

Initiation. See Blastoff
Inkling approach, 119
Innovation, 184

Brown Cow Model, 159
connections, 185–186
convenience, 184–185
feelings, 187–188
information, 186–187
need for, 218
problem determination, 160–162
solutions, 200

Innovation workshops, 171–172
Input business use cases, 484–485
Input in business events, 78–80
Inquiries in business use cases, 484, 487–488
Inspections for completeness reviews, 373–374
Inspectors as stakeholders, 52
Installed systems for new products, 460–461
Integrity requirements, 264, 452–453
Intended products in stakeholder maps, 45
Intention of non-functional requirements, 250
Interested stakeholders in scenarios, 133–134,

144
Interfaces

adjacent systems, 447–448
sketching, 188–189

Internal stored data in function point counting,
489–490

Internationalization, 256, 438–439
Interviews

mind maps for, 119
stakeholders, 102–106
videos for, 120

Intuitive products, 291
Inventions, prototypes for, 115
iPad device

feelings about, 187
non-functional requirements, 246, 248
user experience, 183

iPod device, 154, 161
Isolating work in business use cases, 80–81
Issues

costs, 467–468
new problems, 460–462
off-the-shelf solutions, 458–460
open, 457–458
risks, 465–467
solution ideas, 471
specification templates, 29, 358–359, 369
tasks, 462–463
user documentation and training, 468–470
waiting room, 470–471

IT security requirements, 270
Italy, customs in, 267
Iterative development, 179, 210–212

business use cases, 382
business value analysis and prioritization,

327–328
low-fidelity prototypes for, 112
need for, 323–324
process, 24–25, 324–327
roles, 333–335
truth, 7–8
user stories, 329–333

Iterative profiles, 205

J

Jacobson, Ivar, 69–70
John of Salisbury, 357
Jones, Capers

on cost of repairing errors, 306
Feature Points by, 481
on function points, 480, 492
on risks, 466

Joomla system, 115
Justification for fit criteria, 282–284

K

Kelvin, Lord, 279, 479
Kenneally, Joanna, 117
Keywords in mind maps, 117
Kickoff. See Blastoff
Kindle reader, 158, 161
Kliban, B., 67
Knowledge

for breakouts, 205–206
iterative development, 333–334
vs. specification, 353–357
in strategies, 204
trawling for, 89–90, 126

Knowledge classes, 495–496
Atomic Requirement, 496–497
Business Event, 497–498
Business Use Case, 498–499
Constraint, 499
Fact/Assumption, 499–500
Functional Requirement, 500
Naming Conventions & Data Dictionary, 501
Non-functional Requirement, 501–502
Product Goal, 503
Product Scope, 502
Product Use Case, 502–503

532 ● Index

Knowledge classes (continued)
Stakeholder, 503–504
System Architecture Component, 504
Technological Requirement, 504
Test, 504–505
Work Scope, 505

L

Languages
cultural requirements, 266–268
functional requirements, 234–237
maintainability requirements, 262

Latency requirements, 441–442
Latour, Bruno, 50
Launch. See Blastoff
Laws

maintainability requirements for, 261
robotics, 258

Lawyers, 269
Learning requirements, 439–440
Legacy as trawling consideration, 125
Legal experts as stakeholders, 52
Legal goals in specification templates, 399
Legal requirements, 268–271, 274

compliance, 455–456
fit criteria standards, 289–290, 295
government, 269–270
specification templates, 455–457
standards, 271, 456–457

Leica cameras, 161
Lessons learned, 25
Level of detail in functional requirements,

228–229
Library domains, 348
Lifelike work situations, prototypes for, 115
Light measurements, 285
Lines in mind maps, 118
Links in mind maps, 116–119
Listening in interviews, 105–106
Lister, Tim, 63
Litigation costs, 268–271
Logical files, 489
Longevity requirements, 446
Look and feel requirements

appearance, 435
fit criteria for, 290–291
overview, 250–253
style, 436

Loudness measurements, 285
Low-fidelity prototypes, 111–115
Low-level functional requirements, 238

M

Maiden, Neil, 141, 172
Maintainability requirements, 261–262, 273,

294, 449–450
Maintenance operators as stakeholders, 48
Maintenance users in specification templates,

407
Management as stakeholders, 51
Management review in Quality Gateway, 321
Management templates for stakeholders, 473–477
Mandated constraints

reusing requirements, 339
risk analysis, 390
specification templates, 407–415

Maps
mind, 116–119
stakeholder, 45, 473–474

Mark II function points, 481
Market forces as stakeholders, 52
Marketing department as stakeholders, 46
Materials for completeness reviews, 374
McBreen, Pete, 147
McMenamin, Steve, 110, 115
Meaningfulness, completeness tests for, 312
Meanings. See also Terms and terminology

ambiguous, 388
functional requirements, 234–237
specification templates, 415–416

Measurability, fit criteria for, 279
Measurable goals, 56–58
Measurable requirements, 8–9
Measurements

completeness reviews for, 391
effort estimates, 61–62
and fit criteria, 281–282, 285–286
function point counting. See Function point

counting
and goals, 399
in PAM technique, 399–400
usability, 255

Meetings, blastoff, 64–65
Mellor, Stephen, 27
Merges in activity diagrams, 139
Michalko, Michael, 218
Microsoft SharePoint, 116, 367
Migration to new products, 463–465
Miller, Roxanne, 276
Mind maps, 116–119
Missing attributes, completeness reviews for,

311–312
Missing requirements, completeness reviews for,

374–375

 Index ● 533

Misuse cases, scenarios for, 142–143
Mobile phones, 161
Models

apprenticeships with, 98–99
Brown Cow. See Brown Cow Model
business use cases, 378
data, 231–232
data dictionaries for, 416
domain, 342
for functional requirements, 240–241
quick and dirty, 107–109
requirements knowledge, 355–356
stakeholder involvement, 103
in trawling, 93–97

Modified data for new systems, 465
MoSCoW approach, 384
Motivation in goals, 398
Movies, downloadable, 148
Multiplicity in Volere Requirements Process

Model, 495
Murder books, 119–120
Music media, 153–154, 161

N

Names for patterns, 345
Naming conventions

blastoff, 37
reusing requirements, 339
scoping, 60–61
specification templates, 415–416

Naming Conventions & Data Dictionary
knowledge class, 501

Napoleonic wars, 384
Negative scenarios, 142–143
Negative stakeholders, 52
Netflix, 148, 161
New problems in specification templates,

460–462
Non-events, identifying, 378
Non-functional Requirement knowledge class,

501–502
Non-functional requirements, 10, 245–246

adaptability, 450–451
completeness reviews for, 375
cultural and political, 266–268, 294–295,

454–455
essential business, 179
finding, 271–275
fit criteria for, 286–295
formality guide for, 246–247
vs. functional, 247–248
introduction, 246

legal, 268–271, 295, 455–457
look and feel, 250–253, 290–291, 435–436
maintainability, 261–262, 294, 449–450
operational and environment, 259–261,

293–294, 447–449
performance, 257–259, 292–293, 441–446
product failure, 288–289
prototypes for, 274
security, 262–266, 294, 451–454
vs. solutions, 276–277
in specification templates, 28–29, 274,

358–359, 368–369, 435–457
standards, 289–290
subjective tests, 289
support, 261–262, 450
types, 249–250
usability and humanity, 253–257, 291–292,

437–441
use cases in, 248–249

Normal cases, 135, 144
Normal operators as stakeholders, 48
Note taking, 119
Numbers in subjective tests, 289

O

Observations
in trawling, 98–99
videos for, 120

Off-the-shelf (OTS) products
as constraint, 59, 410–411
functional requirements for, 241–242
in specification templates, 458–460

Onion diagrams, 44
Online book sales, 158–159
Open issues, 457–458
Open questions for interviews, 105
Open source applications, 59
Operational requirements, 259–261, 273,

293–294, 447–449
Operational support, 48, 50
Operational work area, 45
Optimism, problems from, 62
Organization maintainability requirements,

261
Organizing thoughts, mind maps for, 117
Originators in atomic requirements, 363
Origins of business events, 189–190
Osborne, Alex, 174
OTS (off-the-shelf) products

as constraint, 59, 410–411
functional requirements for, 241–242
in specification templates, 458–460

534 ● Index

Outcomes
business use case workshops, 101
scenarios, 145
use cases, 299

Output business use cases, 485–487
Output flows in business events, 78–80
Outside world in business use cases, 72–73
Outsourcing requirements, 239
Owning association, 507

P

PAM (Purpose, Advantage, and Measurement)
approach, 55–59, 399–400

Panasonic cameras, 161
Partitions

business events, 75, 345
business use cases, 69
scope in innovation workshops, 172
specification templates, 422–424
work, 422–424

Partner systems and applications
constraints from, 410
fit criteria for, 293
in operational requirements, 261

Passwords
in non-functional requirements, 276
problems, 157

Patterns, 342–344
from abstraction, 346–351
business event, 344–346
collections, 343–344
across domains, 349–351
for specific domains, 348–349

Peer review, 321
Pena, William, 360
Penalty in value, 165–166
People in strategies, 204
Perceived solutions vs. system essence, 18
Performance requirements, 257–259, 272

capacity, 445–446
fit criteria, 292–293
longevity, 446
precision and accuracy, 443–444
reliability and availability, 444–445
robustness and fault-tolerance, 445
safety-critical, 442–443
scalability and extensibility, 446
speed and latency, 187, 441–442

Personalization, 256, 438–439
Personas

constructing, 182–183
overview, 166–168

specification templates, 404–405
for stakeholders, 49

PESTLE (Political, Economic, Sociological,
Technological, Legal, and Environmental)
management technique, 64

Pfleeger, Shari Lawrence, 262
Phones

addiction, 185
mobile, 161

Photographs, 120–121
Photoshop usability, 254
Physical environment, expected, 447
Pictures for low-fidelity prototypes, 114
Piggybacking in brainstorming, 174
Planning tasks in specification templates,

462–463
Plans for innovation workshops, 172
Pleasure, paying for, 160
Plots in scenarios, 130
Policy as system essence, 18
Politeness requirements, 440–441
Political, Economic, Sociological, Technological,

Legal, and Environmental (PESTLE)
management technique, 64

Political beneficiaries as stakeholders, 51
Political correctness, 268
Political requirements, 266–268, 454–455
Post-it notes, 107–109
Potential of products, prototypes for, 115
Potential requirements

communicating requirements from, 354
formalized, 303

Potential users, 50
Potentially reusable requirements, 340
Precision requirements, 443–444
Preconceptions in problem determination,

153
Preconditions

business use cases, 134
scenario templates, 144

Preliminary cost estimates, 17
Prestige, paying for, 160–161
Priorities

atomic requirements, 364
business events, 217
in functional requirements, 229
iterative development, 211, 327–328
user stories, 326
users, 405–406

Prioritizing requirements
completeness reviews for, 382–386
factors, 382–383
grading, 384

 Index ● 535

spreadsheets for, 385–386
timing, 383–384

Privacy and Electronic Communications (EC
Directive) Regulations, 270–271

Privacy requirements, 263–264, 453
Problem determination, 147–149

brainstorming, 173–174
Brown Cow Model, 149–156
challenging constraints, 169–171
formality guide, 149
future issues, 157–160
innovation, 160–162
innovation workshops, 171–172
personas, 166–168
right problem, 156–157
systemic thinking, 162–164
value, 165–166

Process, 13–14
adapting, 31–32
case study, 15–17
in context, 14–15
evolution of requirements, 26–27
formality guide, 32–33
incremental and iterative, 24–25
prototyping in, 19
Quality Gateways, 22
retrospectives, 25
reusing requirements, 23
reviewing specifications, 23–24
scenarios in, 20
snow cards, 29–30
templates, 27–29
trawling, 17–18
Volere Requirements Process Model overview,

21-22
writing requirements, 20–22

Product-centric approach for business events,
76–77

Product determination activity
external strategy, 209
iterative strategy, 211–212, 214

Product development as stakeholder, 46
Product Goal knowledge class, 503
Product owners in iterative development, 334
Product partitioning association, 507
Product scope, 429–432

boundaries, 429–431
in risk analysis, 390

Product Scope knowledge class, 502
Product tracing association, 507–508
Product Use Case knowledge class, 502–503
Product use cases (PUCs), 82–84

actors in, 84

atomic requirements, 361–362
functional requirements, 225–226
low-fidelity prototypes for, 112
overview, 196–199
in scope, 431–432
user stories, 326

Productivity, usability for, 253
Productization requirements, 448–449
Products

business use cases, 70
character of, 248
copyable, 459–460
extent, 180–181
fit criteria for, 288–289

Profiles
iterative, 210–212
in project requirements, 204–205

Progressive prioritization, 383–384
Progressive projects, 205
Progressive strategy, 212–214
Project blastoff. See Blastoff
Project constraints, 60, 390
Project drivers

risk analysis, 389–390
specification templates, 28, 357–359, 395

Project issues. See Issues
Project profiles

iterative, 210–212
in project requirements, 204–205

Project purpose, fit criteria for, 299–300
Pronouns

avoiding, 388
in functional requirements, 236

Protagonists in negative scenarios, 142–143
Prototyping

blastoff for, 37
high-fidelity, 115–116
for look and feel, 252
low-fidelity, 111–115
for non-functional requirements, 274
overview, 109–111
in process, 19
in subjective tests, 289

Public Company Accounting Reform and
Investor Protection Act, 269–270

Public opinion as stakeholder, 53
Public seminars for specification templates, 395
Purpose

blastoff, 36
reusing requirements, 339
specification templates, 397–400

Purpose, Advantage, and Measurement (PAM)
approach, 55–59, 399–400

536 ● Index

Q

Quality Gateways, 22, 303–304
for completeness, 311–312
for consistent terminology, 313–314
effects, 304–305
for fit criteria, 312–313
formality guide, 304–305
for gold plating, 317
implementing, 319–321
quality requirements, 305–306
for requirement value, 316–317
for requirements creep, 317–319
for requirements vs. solutions, 315
scope, 307–311
in specification reviews, 371–372
for viability, 314–315
working with, 306–307

Quantifiable benefits as goals, 399
Questions

interviews, 104–105
user stories, 329–331

Quick and dirty modeling, 19, 107–109
Quickness commitment, 323

R

Rabbit projects, 38
business use cases, 69
communicating requirements, 353
completeness reviews, 372–373
description, 32–33
fit criteria, 280
functional requirements, 224
non-functional requirements, 247
problem determination, 149
Quality Gateway, 304–305
scenarios for, 129
trawling, 89

Radiohead band, 169
Ranges

fit criteria for, 293
in function point counting, 492

Ratings and rankings by customers, 316–317,
363–364

Rationale
atomic requirements, 362
fit criteria, 282–284
in functional requirements, 229–231
for requirements, 21

Ready-made products, 458–459
Reasonable goals, 57
Reasoning for requirements, 388
Record elements, 489
Recording innovation workshops, 172

Red zones, 236
Reengineering in trawling, 97
Rees, Judy, 106
Reference step in CRUD checks, 380–381
Related patterns, 344, 346
Relationships in mind maps, 116–119
Releases

in prioritizing requirements, 384
requirements for, 449

Relevancy
Quality Gateways, 309–311
requirements knowledge model, 356

Relevant facts and assumptions
blastoff, 37
reusing requirements, 339
risk analysis, 390
specification templates, 416–417

Reliability requirements, 258, 444–445
Religious observances, 268
Renting movies, 148
Repairing errors, cost of, 306
Requirements, 13–14

blastoff, 15–17
case study, 15
context, 14–15
customizing, 31–32
evolution, 26–27
formality guide, 32–33
functional. See Functional requirements
issues. See Issues
iterative and incremental processes, 24–25
knowledge classes. See Knowledge classes
known, 5–6
non-functional. See Non-functional

requirements
overview, 9
quality, 22, 305–306
quick and dirty modeling, 19
retrospective, 25
reusing, 23, 217–218
reviewing, 23–24
scenarios, 20
snow cards, 29–30
vs. solutions, 315
templates for. See Volere requirements

specification template
trawling for. See Trawling for requirements
truths, 1, 5–6, 9
types of, 249–250, 395–396
writing, 20–22, 353-357

Requirements bait, 110
Requirements creep, 317–319
Requirements Definition activity, 211–212, 214
Requirements knowledge model, 355–356

 Index ● 537

Requirements profiles, 204–205
Requirements skills

business rules, 218–219
ideas brokering, 219–220
innovation, 218
strategies, 215–222
systemic thinking, 220–221
visualization, 221–222

Resources
function point counting, 492–494
requirements for, 258

Responses to events, 189, 344–345
Responsiveness to customers, 188
Retrospectives, 25
Reusable components, 459
Reusable requirements, 106–107
Reusing requirements, 23

description, 338–341
domain analysis in, 351
overview, 337–338
patterns in. See Patterns
skills for, 217–218
sources of, 341–342

Revenue goals in specification templates, 399
Reverse-engineering

document archeology, 123
essence, 151

Reviewing requirements specifications. See
Completeness requirements

Reward in value, 165–166
Right problem, solving, 156–157
Risks and risk analysis, 63

in blastoff, 37
completeness reviews for, 388–390
constraints, 390
of damage, 258
drivers, 389–390
functional requirements, 390
reviewing, 23
in scoping, 62–63
in solutions, 194–195
in specification templates, 465–467

Robotics, laws of, 258
Robustness requirements, 258, 445
Roles in iterative development, 333–335
Rules

business, 218–219
maintainability requirements for, 261

S

Sabotage, 315
Safety-critical requirements, 442–443
Safety inspectors as stakeholders, 52

Safety requirements, 258
Saint-Exupery, Antoine de, 153
Sarbanes-Oxley Act (SOX), 269–270
Satellite broadcasting domain, 348–349
Satisfaction, customer

atomic requirements, 363–364
Quality Gateway for, 316–317

Scalability requirements, 258, 446
Scale of measurement for fit criteria, 285–286
Scandals, financial, 269–270
Scenarios, 129

airline check-in agent, 131–140
alternative cases, 139–140, 145
business use case workshops, 101
diagramming, 138–139
exception cases, 140–141, 145
formality guide for, 129–130
functional requirements, 239
negative, 142–143
normal case, 135
in process, 20
product use cases, 196–199
templates for, 131, 143–145
what if?, 142

Schedules as constraints, 413
Scope

in blastoff, 36
boundaries, 429–431
business use cases, 70–73, 82–83, 375–377
external strategy, 207
first-cut work context, 42–43
in function point counting, 481–482
in functional requirements, 237, 420–425
innovation workshops, 172
iterative strategy, 210–211, 213
lead requirements analysts for, 16
product, 180–181, 429–432
Quality Gateways, 307–311
in reusing requirements, 339
risk analysis, 390
specification templates, 420–425
in systemic thinking, 164
in trawling, 97

Scoping business problem, 35
blastoff, 35–37
blastoff meetings, 64–65
case study, 41–43
constraints, 59–60
costs, 61–62
external strategy, 207
formality guide, 38
go/no go decisions, 63–64
goals, 54–59
iterative strategy, 210–211, 213

538 ● Index

Scoping business problem (continued)
naming conventions and definitions, 60–61
risks, 62–63
scope setting, 38–41
stakeholders. See Stakeholders
trinity, 43–44

Security requirements, 263, 273
access, 263, 451–452
“and no more,” 265–266
auditing, 265, 454
fit criteria for, 294
immunity, 454
integrity, 264, 452–453
privacy, 263–264, 453

Seddon, John, 162, 164
Self-documentation in legal requirements, 269
Self-referential approach, 167
Seminars for specification templates, 395
Separating work from environment, 40–41
Service goals in specification templates, 399
Service technicians in specification templates,

407
Shared commitment, 323
SharePoint, 116, 367
Shells

requirements, 359
for specifications, 21, 396

“Should,” avoiding, 388
Simulations for subjective tests, 289
Sketches

interface, 188–189
overview, 109–115

SMART (Specific, Measurable, Attainable,
Relevant and Timebound) management
technique, 64

Smartphones addiction, 185
Snow cards

atomic requirements, 359–361
iterative development, 327
for specifications, 21
user stories, 331–332
working with, 29–30

Sobel, Dava, 353
Software

errors in, 306
look and feel, 251
off-the-shelf products. See Off-the-shelf (OTS)

products
for prototypes, 115
safety requirements, 258
truths, 2–4

Solutions and solution constraints, 59, 177–178
adjacent systems, 190–194
conclusion, 199–201

cost information, benefits, and risks, 194–195
document design decisions, 195–196
essential business, 179–180
fit criteria for, 279, 300
innovation, 184–188
iterative development, 179
origins of business events, 189–190
product extent, 180–181
product use case scenarios, 196–199
vs. requirements, 276–277
sketching interface, 188–189
in specification templates, 407–409, 471
user considerations, 181–184

Sorting prioritization categories, 384
Sound measurements, 285
Soviet Style products, 246
SOX (Sarbanes-Oxley Act), 269–270
Special-interest groups, 53
Specialized words in functional requirements,

235
Specific, Measurable, Attainable, Relevant

and Timebound (SMART) management
technique, 64

Specifications, 217
for functional requirements, 225
reviewing. See Completeness requirements
templates for. See Volere requirements

specification template
tools for, 21

Speed requirements, 187, 257, 441–442
Spelling in cultural requirements, 268
Sponsors as stakeholders, 45–47
Spreadsheets, 385–386
Stahl, Leslie Hulet, 121
Stakeholder knowledge class, 503–504
Stakeholders, 44–45

acceptability of requirements to, 315
in blastoff, 37
Brown Cow Model, 159
completeness tests for, 312
customers as, 47–48
finding, 54
in functional requirements, 233
identifying, 16
interviewing, 102–106
management templates, 473–477
maps, 473–474
miscellaneous, 50–54
prototypes for, 111, 113–115
in reusing requirements, 339–340
in risk analysis, 389
for scenarios, 131, 133–134, 144
specification templates, 400–407
sponsors, 45–47

 Index ● 539

in trawling, 91–92
users as, 48–50

Standard setters as stakeholders, 52–53
Standards

branding, 251, 290
fit criteria, 289–290
legal requirements, 271
in specification templates, 456–457

Stored data in function point counting, 482–
483, 489–492

Stories. See Scenarios
Story cards, 239–240
Strategies, 203

determining, 215
external, 206–209
iterative, 210–212
knowledge, activities, and people in, 204
knowledge requirements, 205–206
progressive, 212–214
project requirements profiles, 204–205
requirements skills, 215–222

Strengths, Weaknesses, Opportunities, and
Threats (SWOT) management technique,
64

Style requirements, 436
Subject-matter experts

iterative development, 333
as stakeholders, 51

Subjective interpretation, 313
Subjective tests, fit criteria for, 289
Subtypes in function point counting, 489–490
Sullivan, Wendy, 106
Support requirements, 261–262, 273, 450
Supporting association, 508
Supporting materials in atomic requirements,

365
Swim lanes, 154–156
SWOT (Strengths, Weaknesses, Opportunities,

and Threats) management technique, 64
System Architecture Component knowledge

class, 504
Systemic thinking, 162–164, 220–221
Systems

adjacent. See Adjacent systems
business events, 76–77
business use cases, 70

T

Tables of contents in templates, 27, 357–358,
393–394

Tasks in specification templates, 462–463
Team review in Quality Gateway, 321

Technical experts as stakeholders, 53
Technical knowledge in iterative development,

334–335
Technicians in specification templates, 407
Technological fossils, 76
Technological Requirement knowledge class,

504
Technological requirements, 225, 237
Technological skills, 315
Technology

in problem statements, 151–152
for wikis, 22

Templates, 27–29
non-functional requirements, 274
scenarios, 131, 143–145
specifications. See Volere requirements

specification template
stakeholders management, 473–477

Terms and terminology
ambiguous, 388
blastoff for, 37
functional requirements, 234–237
Quality Gateway for, 313–314
specification templates, 415–416
stakeholder interviews, 103

Test cases
functional requirements, 296
iterative development, 327

Test knowledge class, 504–505
Testability

fit criteria for, 396
of goals, 399
of requirements, 8–9

Testing
completeness, 311–312
extreme programming, 280
fit criteria, 280, 312–313
Quality Gateways for, 22
requirements, 396

Testing association, 508
Texting, 185
Thinking, importance of, 8
Thought organization, mind maps for, 117
Three strikes approach, 277
Throughput requirements, 258
Throwaway prototypes, 110
Time constraints in blastoff, 60
Time in product failure measurements, 288
Time-triggered business events, 74–75
Time-triggered business use cases, 487–488
Tolerances

for fit criteria, 284–285
in subjective tests, 289

540 ● Index

Tower of Babel, 314
Training in specification templates, 469–470
Translated data for new systems, 465
Translators, analysts as, 91
Trawling for requirements, 17–18, 87–88

analysts for, 91–92
apprenticeships in, 98–99
Brown Cow Model, 93–97
business use case workshops, 99–102
business use cases, 92
current situation in, 94–97
diagrams, 92
document archeology in, 123–124
family therapy, 125
formality guide for, 89
interviews, 102–106
for knowledge, 89–90, 126
mind maps, 116–119
modeling, 107–109
murder books, 119–120
observations, 98–99
photographs, 120–121
prototypes and sketches, 109–116
reusable requirements, 106–107
techniques, 125–129
video, 120–121
wikis, blogs, and discussion forums, 122

Triage in prioritizing requirements, 384
Triggers

business use cases, 133–134
innovation, 184
scenario templates, 144

Trust, 187
Tufte, Edward, 221
Typeface measurements, 285
Types, requirement, 249–250, 361, 395–396

U

Uncertainty range in function point counting,
492

Understandability requirements, 440–441
Unduplicated attributes, 488
Unified Modeling Language (UML)

activity diagrams, 138, 240
use case diagrams, 483

Universal cures, 31
Unnecessary features and requirements, 317
Unqualified adjectives and adverbs, 388
Update step in CRUD checks, 380–381
Usability requirements, 49

accessibility, 441
ease of use, 437–438

fit criteria for, 291–292
learning, 439–440
overview, 253–257
personalization and internationalization,

438–439
understandability and politeness, 440–441

Use cases
business. See Business use cases (BUCs)
fit criteria in, 299
non-functional requirements, 248–249,

272–274
product. See Product use cases (PUCs)
in scope, 431–432
UML use case diagrams, 483

User business in specification templates, 397–398
User documentation in specification templates,

468–469
User experience

designing, 183–184
solutions, 201

User-friendliness as requirement, 282–283
User management as stakeholder, 46
User problems for new products, 461
User stories

fleshing out, 332–333
formalizing, 331–332
functional requirements, 239–240
iterative development, 325–326, 329–333
questions, 329–331

Users
priorities, 405–406
in reusing requirements, 339
in risk analysis, 389–390
in solutions, 181–184
in specification templates, 403–404, 406
as stakeholders, 48–50
understanding of requirements by, 9

V

Value
overview, 165–166
in solutions, 195

Value demand, 164
Verbs, 106
Version numbers, 383
Viability within constraints, 314–315
Viable goals, 57
Video records, 120–121
Viruses, 266
Visualization, 221–222
Volere Requirements Process Model overview,

11–12

 Index ● 541

Volere requirements specification template, 357
assembling, 365–366
assumptions in, 418–419
atomic requirements, 359–365
automated tools, 366–367
for completeness reviews, 374
constraints in, 407–415
data dictionaries, 427–429
data model, 425–427
data requirements in, 433–434
divisions, 358–359
facts in, 416–417
functional requirements, 367–368, 433–434
naming conventions and definitions,

415–416
non-functional requirements, 368–369,

435–457
product scope, 429–432
project issues, 369, 457–471
purpose, 397–400
requirements types, 395–396
shell in, 396
stakeholders, 400–407
tables of contents, 357–358, 393–394
testing requirements, 396
use of, 394
work scope, 420–425

W

Waist-High Shelf pattern, 343
Waiting room, 470–471
Warning messages, 269
Waterfall process, 324
Web-based products, 252

Weights for prioritizing requirements, 385
What element in Brown Cow Model, 150
What if? scenarios, 142
What-Now view in Brown Cow Model, 93
Whiteboards, 107
Wider environment in stakeholder maps, 45
Wikis

non-functional requirements, 271
trawling, 122

Wittenberg, Ethel, 294
Word processors, 366–367
Words. See Terms and terminology
Work

business use cases, 70–72
context, 42–43, 92
in iterative development, 324, 327
partitioning. See Partitions
reengineering, 97
in scope, 39

Work area measurements, 480–481
Work investigation activity

external strategy, 207–209
iterative strategy, 210–214

work scope diagrams, 41–43
Work Scope knowledge class, 505
Working models in trawling, 94
Workplace environment, constraints from, 412
workshops

business use cases, 99–102
innovation, 171–172
use case, videos for, 121

Writing requirements, 20–22, 353
formality guide, 353–354
knowledge vs. specification in, 353–357
potential requirements, 354

	Contents
	Preface to the Third Edition
	Foreword to the First Edition
	Acknowledgments
	2 The Requirements Process: in which we present a process for discovering requirements and discuss how you might use it
	The Requirements Process in Context
	A Case Study
	Project Blastoff
	Trawling for Requirements
	Quick and Dirty Modeling
	Scenarios
	Writing the Requirements
	Quality Gateway
	Reusing Requirements
	Reviewing the Requirements
	Iterative and Incremental Processes
	Requirements Retrospective
	Evolution of Requirements
	The Template
	The Snow Card
	Your Own Requirements Process
	Formality Guide
	The Rest of This Book

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

