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 xxi

Preface to the 
Third Edition

Why a third edition of Mastering the Requirements Process? Because we need 
it. Much water has passed under the bridge since the last edition of this book 
was published, and much has happened in the requirements and develop-
ment world. We have applied the Volere requirements techniques described 
in this book to many projects; we have received feedback from our projects 
and those of clients and other practitioners of the Volere techniques; and 
armed with that knowledge we felt it was time to update our book to reflect 
the current state of requirements practice. Today’s systems, software, prod-
ucts, and services have to be more attractive and more appropriate if they are 
to be noticed, bought, used and valued. More than ever, we need to be assured 
that we are solving the real problem. More than ever, we need to be doing a 
better job with requirements discovery. 

New techniques for software development—most noticeably the rise of 
agile techniques—have changed the role of the requirements discoverer: not 
the underlying truth of the requirements activity, but the way in which 
requirements are discovered. Business analysts working with agile teams 
perform their task differently. Combinations of iterative, incremental, and 
spiral development techniques require the business analyst to go about the 
requirements task in a different way. 

Outsourcing has increased enormously, which, rather than lessening the 
requirements burden, means that there is an even greater need to produce 
accurate, and unambiguous, requirements. If you are planning to send your 
specification to the far side of the world, you would like to think that your 
outsourcer will understand it and know exactly what to build. 

Despite all these changes in the way in which we develop and deliver our 
products and services, one underlying fact is still there, and it is this: If we are 
to build some software or a product or a service, then it must provide the optimal 
value for its owner. 

You will see the theme of optimal value developed in this edition, and 
what it comes down to is that it does not matter how you develop your soft-
ware, but rather what that software does for its owner that matters. You can 
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finish a project on time and on budget, but if the delivered software brings 
little benefit to the owning organization, it is a waste of money. Alterna-
tively, you can overspend and be late, but if the delivered product brings 
several million dollars of value, then it is more beneficial than its cheaper 
counterpart. 

The task of the business analyst is to discover the real business that the 
software is supposed to improve. This cannot be done at the keyboard sim-
ply because software is a solution, and to provide a valuable solution you 
first have to understand the problem—the real problem—that it is meant to 
solve. In this edition we have written about thinking above the line. The line 
in this case comes from the Brown Cow Model (you’ll have to read the book 
to find out what it is) and represents the division between the technological 
implementations and the abstract, essential world where you discover the 
real needs. We have written about innovation as a way of finding better, more 
appropriate needs and solutions. 

This, then, is the task of the requirements discoverer, and indeed of this 
edition: to delve more deeply into how we understand our client organiza-
tions, and how we find better solutions by discovering and communicating 
a better understanding of the problem. 

London, June 2012

For college instructors who adopt this book for their courses, some of the 
graphics used herein are available in the Pearson Instructor Resource Cen-
ter (www.pearsonhighered.com) for your use in preparing course materials.

www.pearsonhighered.com
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Foreword to the 
First Edition

It is almost ten years now since Don Gause and I published Exploring Require-
ments: Quality Before Design. Our book is indeed an exploration, a survey of 
human processes that can be used in gathering complete, correct, and com-
municable requirements for a software system, or any other kind of product.

The operative word in this description is “can,” for over this decade the 
most frequent question my clients have asked is, “How can I assemble these 
diverse processes into a comprehensive requirements process for our infor-
mation systems?”

At long last, James and Suzanne Robertson have provided an answer I can 
conscientiously give to my clients. Mastering the Requirements Process shows, 
step by step, template by template, example by example, one well-tested way 
to assemble a complete, comprehensive requirements process.

One watchword of their process is “reasonableness.” In other words, every 
part of the process makes sense, even to people who are not very experi-
enced with requirements work. When introducing this kind of structure to 
an organization, reasonableness translates into easier acceptance—an essen-
tial attribute when so many complicated processes are tried and rejected.

The process they describe is the Volere approach, which they developed 
as an outcome of many years helping clients to improve their requirements. 
Aside from the Volere approach itself, James and Suzanne contribute their 
superb teaching skills to the formidable task facing anyone who wishes to 
develop requirements and do them well.

The Robertsons’ teaching skills are well known to their seminar students 
as well as to fans of their Complete Systems Analysis books. Mastering the 
Requirements Process provides a much-requested front end for their analysis 
books—or for anyone’s analysis books, for that matter.

We can use all the good books on requirements we can get, and this is 
one of them!

Gerald M. Weinberg
www.geraldmweinberg.com

February 1999

READING
Gause, Donald C., and 
Gerald M. Weinberg. 
Exploring Requirements: 
Quality Before Design. 
Dorset House, 1989.

READING
Robertson, James, and 
Suzanne Robertson. 
Complete Systems Analysis: 
The Workbook, the Textbook, 
the Answers. Dorset House, 
1998.

www.geraldmweinberg.com
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2
�in which we present a process for 

discovering requirements and 
discuss how you might use it

The Requirements 
Process

This book is a distillation of our experience. In it, we describe a requirements 
process that we have derived from our years of working in the requirements 
arena—working with clever people who do clever things, and working on 
projects in wonderfully diverse domains. We have also learned much from 
the experience of the many people around the world who use various parts 
of our techniques. 

We developed the Volere Requirements Process and its associated specifi-
cation template from the activities and deliverables that had proved them-
selves to be most effective in project and consulting assignments with our 
clients. The result of this experience is a requirements discovery and spec-
ification process whose principles can be applied—and indeed have been 
applied—to almost all kinds of application types in almost all kinds of devel-
opment environments. 

We want to stress from the very beginning that while we are presenting a 
process, we are using it as a vehicle for discovering requirements; we do not 
expect you to wave this process around and tell your co-workers that it is 
“the only way to do things.” However, we have high expectations that you 
will find many useful things from this process that will, in turn, help you to 
discover and communicate your requirements more productively and accu-
rately. We have personally seen hundreds of companies adapt the process to 
their own cultures and organizations, and we know of thousands more that 
have done so. 

Our clients who use the Volere Requirements Process are those who 
develop their products using RUP, incremental, iterative, spiral, Scrum, or 
other variations of iterative development; more formalized waterfall pro-
cesses; and a variety of homebrewed development processes. Over the years, 

Whether you 
are building 
custom systems, 
building systems 
by assembling 
components, using 
commercial off-
the-shelf software, 
accessing open-
source software, 
outsourcing your 
development, or 
making changes to 
existing software, 
you still need to 
explore, discover, 
understand, and 
communicate the 
requirements.

If the right product 
is to be built, 
then the right 
requirements have 
to be discovered.
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all of these clients agreed with us:  If the right product is to be built, the right 
requirements have to be discovered. But requirements don’t come about by 
fortuitous accident. To find the correct and complete requirements, you need 
some kind of orderly process. 

The Volere Requirements Process is shown in Figure 2.1. Each of the activ-
ities included in the figure, along with the connections between them, is 
described in detail in subsequent chapters of this book.

The Requirements Process in Context 

We need to point out—indeed, we need to stress—that this process is not 
intended to be a waterfall approach. At various stages throughout this book, 
we will point out how you might modify the process if you are using some 
kind of iterative development.

Figure 2.1

This map of the Volere 
Requirements Process 
shows the activities and 
their deliverables. We 
have used a stylized 
data flow notation. 
Each activity (the 
bubbles) and its 
deliverables (named 
arrows or documents) 
are explained in the 
text. The dotted lines 
represent how this 
process is used with 
iterative projects.
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Requirements discovery should be seen as a necessary forerunner of any 
construction activity, but it should also be viewed as something that can be 
conducted quite quickly, sometimes quite informally, sometimes overlap-
ping with subsequent design and construction activities, but never ignored.

Let’s look briefly at each of the activities shown in Figure 2.1, which are 
covered in more detail in subsequent chapters. The intention of this chap-
ter is to give you a gentle introduction to the process, its components, its 
deliverables, and the ways that they fit together. If you want more detail on 
any of the activities, feel free to jump ahead to the relevant chapter before 
completing this overview. 

As we go through the process, we describe it as if you were working 
with a brand-new product—that is, developing something from scratch. 
We take this approach to avoid, for the moment, becoming entangled in 
the constraints that are part of all maintenance projects. Later, we will dis-
cuss requirements for those situations when the product already exists and 
changes to it are required. 

A Case Study

We will explain the Volere Requirements Process by taking you through a 
project that uses it.

The IceBreaker project is to develop a product that predicts when and 
where ice will form on roads, and to schedule trucks to treat the roads with 
de-icing material. The new product will enable road authorities to more accu-
rately predict ice formation, schedule road treatments more precisely, and 
thereby make the roads safer. The product will also reduce the amount of 
de-icing material needed, which will help both the road authority’s finances 
and the environment. 

Project Blastoff

Imagine launching a rocket. 10 – 9 – 8 – 7 – 6 – 5 – 4 – 3 – 2 – 1 – blastoff! If all it 
needed were the ability to count backward from 10, then even Andorra1 would 
have its own space program. The truth of the matter is that before we get to 
the final 10 seconds of a rocket launch, a lot of preparation has taken place. 
The rocket has been fueled, and the course plotted—in fact, everything that 
needs to be done if the rocket is to survive and complete a successful mission. 

The key purpose of the project blastoff is to build the foundation for the 
requirements discovery that is to follow, and to ensure that all the needed 
components for a successful project are in place. The principal stakehold-
ers—the sponsor, the key users, the lead requirements analyst, technical and 
business experts, and other people who are crucial to the success of the proj-
ect—gather together to arrive at a consensus on the crucial project issues. 

“ The likelihood 

of frost or ice forming is 

determined by the energy 

receipt and loss at the 

road surface. This energy 

flow is controlled by a 

number of environmental 

and meteorological 

factors (such as 

exposure, altitude, road 

construction, traffic, cloud 

cover, and wind speed). 

These factors cause 

significant variation in 

road surface temperature 

from time to time and 

from one location to 

another. Winter night-time 

road surface temperatures 

can vary by over 10°C 

across a road network in a 

county. ”—Vaisala News

Blastoff is also 
known as “project 
initiation,” “kickoff,” 
“charter,” “project 
launch,” and many 
other things. We use 
the term “blastoff” 
to describe what 
we are trying to 
achieve—getting 
the requirements 
project launched 
and flying.

FOOTNOTE 1
Andorra is a tiny 
principality in the 
Pyrenees mountains 
between France and 
Spain. Only since 
1993 has it been 
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The blastoff defines the scope of the business problem and seeks concur-
rence from the stakeholders that yes, this is the area of the owner’s orga-
nization that needs to be improved. The blastoff meeting confirms the 
functionality to be included in the requirements discovery, and the func-
tionality that is to be specifically excluded. 

Defining the scope of the business problem is usually the most conve-
nient way to start. In the IceBreaker project, the lead requirements analyst 
coordinates the group members’ discussion as they come to a consensus on 
the scope of the work—that is, the business area to be improved—and how 
this work relates to the world around it. The meeting participants draw a 
context diagram on a whiteboard to show which functionality is included 
in the work, and by extension, which elements they consider to be outside 
the scope of the ice forecasting business. The diagram defines—precisely 
defines—the included functionality by showing the connections between 
the work and the outside world. (More on this in the next chapter.) This use 
of a context diagram is illustrated in Figure 2.2. Later, as the requirements 
activity proceeds, the context diagram is used to reveal the optimal product 
to help with this work.

When they have reached a reasonable agreement on the scope of the busi-
ness area to be studied, the group identifies the stakeholders. The stakeholders 
are those people who have an interest in the product, or who have knowl-
edge pertaining to the product—in fact, anyone who has requirements for 
it. For the IceBreaker project, the people who have an interest are the road 
engineers, the truck depot supervisor, the weather forecasting people, road 
safety experts, ice treatment consultants, and so on. These people must be 
identified, so that the requirements analysts can work with them to find all 
the requirements. The context diagram, by establishing the extent of the 
work, helps to identify many of the stakeholders. 

R efer to Chapter 3, 
Scoping the Business 
Problem, for a detailed 
discussion of project 
blastoff.

a parliamentary 
democracy, but it retains 
its ancient chiefs of 
state as a coprincipality. 
The responsibilities of 
the French prince are 
now vested with the 
president of France. On 
the Spanish side, the 
“prince” is the bishop of 
Seo de Urgel. 
 Andorra became 
famous in the 1960s for 
having a defense budget 
of $4.50, a tale that 
has become the stuff of 
legend. Today Andorra’s 
defense budget is zero.

Figure 2.2

The context diagram 
is used to build a 
consensus among the 
stakeholders as to the 
scope of the work that 
needs to be improved. 
The eventual product 
will be used to do part 
of this work.

The work
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The blastoff also confirms the goals of the project. The blastoff group 
comes to an agreement on the business reason for doing the project, and 
agrees that there is a clear and measurable benefit to be gained by doing the 
project. The group also agrees that the product is worthwhile for the business 
to make the investment, and that the organization is capable of building and 
operating it. 

It is sensible project management practice at this stage to produce a pre-
liminary estimate of the costs involved for the requirements part of the proj-
ect—this can be done by using the information already contained in the 
context diagram. It is also sensible project management to make an early 
assessment of the risks that the project is likely to face. Although these risks 
might seem like depressing news, it is always better to get an idea of the 
downside of the project (its risk and cost) before being swept away by the 
euphoria of the benefits that the new product is intended to bring. 

The blastoff group members arrive at a consensus on whether the project 
is worthwhile and viable—that is, they make the “go/no go” decision. It 
might seem brutal to kill off an embryonic project, but we know from bitter 
experience that it is better to cancel a project at an early stage than to have it 
stagger on for months—or years—consuming valuable resources when it has 
little or no chance of success. The blastoff group carefully considers whether 
the product is viable, and whether its benefits outweigh its costs and risks. 

Alternatively, if too many unknowns remain at this point, the blastoff 
group might decide to start the requirements investigation with the inten-
tion of reviewing the requirements after a short while and reassessing the 
value of the project. 

Trawling for Requirements

Once the blastoff is completed, the business analysts start trawling the work 
to learn and understand its functionality—“What’s going on with this piece 
of the business, and what do they want it to do?” For convenience and con-
sistency, they partition the work context diagram into business use cases. 

Each business use case is an amount of functionality needed by the work 
to make the correct response to a business event. (These terms will be fully 
explained soon.) A requirements analyst is assigned to each of the business 
use cases—the analysts can work almost independently of one another—for 
further detailed study. The analysts use trawling techniques such as appren-
ticing, scenarios, use case workshops, and many others to discover the true 
nature of the work. These trawling techniques are described in Chapter 5, 
Investigating the Work. 

Trawling means discovering the requirements. The business analysts sit 
with the IceBreaker technicians as they describe the work they currently 
do, and their aspirations for work they hope to do. The business analysts 

It is always better 
to get an idea of 
the downside of 
the project (its risk 
and cost) before 
being swept away 
by the euphoria of 
the benefits that 
the new product is 
intended to bring.

READING
DeMarco, Tom, and Tim 
Lister. Waltzing with Bears: 
Managing Risk on Software 
Projects. Dorset House, 
2003.

McConnell, Steve. Software 
Estimation: Demystifying the 
Black Art. Microsoft Press, 
2006.

Refer to Chapter 4 for a 
discussion of business 
events and business 
use cases, and an 
exploration of how you 
might use them.

Refer to Chapter 5, 
Investigating the 
Work, for details of the 
trawling activity.
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also consult with other interested stakeholders and subject-matter experts—
experts on usability, security, operations, management, and so on—to dis-
cover other needs for the eventual product. The IceBreaker business analysts 
spent a lot of time with the meteorologists and the highway engineers. 

Perhaps the most difficult part of requirements investigation is uncover-
ing the essence of the system. Many stakeholders inevitably talk about their 
perceived solution to the problem or express their needs in terms of the cur-
rent implementation. The essence, by contrast, is the underlying business 
reason for having the product. Alternatively, you can think of it as the policy 
of the work, or what the work or the business rule would be if it could exist 
without any technology (and that includes people). We will have more to 
say about the essence of the system in Chapter 7, Understanding the Real 
Problem. 

Once they understand the essence of the work, the analysts get together 
with the key stakeholders to decide the best product to improve this work. 
That is, they determine how much of the work to automate or change, and 
what effect those decisions will have on the work. Once they know the 
extent of the product, the requirements analysts write its requirements. We 
illustrate this process in Figure 2.3.

The IceBreaker product must not be a simplistic automation of the work as 
it is currently done; the best of our automated products are not mere imita-
tions of an existing situation. To deliver a truly useful product, the analyti-
cal team must work with the stakeholders to innovate—that is, to develop 
a better way to do the work, and a product that supports this better way of 
working. They make use of innovation workshops where the team uses cre-
ative thinking techniques and innovative triggers to generate new and better 
ideas for the work and the eventual product. 

Figure 2.3

The blastoff determines 
the scope of the work 
to be improved. The 
business use cases are 
derived from the scope. 
Each of the business 
use cases is studied 
by the requirements 
analysts and the 
relevant stakeholders 
to discover the desired 
way of working. When 
this is understood, the 
appropriate product 
can be determined 
(the PUC scenario) and 
requirements or user 
stories written from it.

Business 
Use Cases

1.
2.
3.
4.
5.
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1.
2.
3.
4.
5.

Requirement

User Story

We look at developing 
innovative products in 
Chapter 8, Starting the 
Solution.
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Quick and Dirty Modeling

Models can be used at any time in the Volere life cycle; in Figure 2.1, we show 
this activity as “Prototype the Work.” There are, of course, formal models 
such as you would find in UML or BPMN, but a lot of the time business 
analysts can make productive use of quick sketches and diagrams to model 
the work being investigated. One quick and dirty modeling technique we 
should mention here is using Post-it notes to model functionality; each note 
can be used to represent an activity, and the notes can be rapidly rearranged 
to show different ways the work is done or could be done. We find that 
stakeholders relate to this way of modeling their business processes, and are 
always willing to participate with hands-on manipulation of the Post-its to 
show what they think the work should be. We discuss this kind of modeling 
more fully in Chapter 5, Investigating the Work.

In Chapter 8, Starting the Solution, we examine how you move into an 
implementation of the requirements discovered so far. At this point, your 
models change from being something to explain the current work, to some-
thing to explain how the future product will help with that work. 

We can now start to refer to this type of model as a prototype—a quick 
and dirty representation of a potential product using pencil and paper, white-
boards, or some other familiar means, as shown in Figure 2.4. Prototypes 
used at this stage are intended to present the user with a simulation of the 
requirements as they might be implemented. The IceBreaker business ana-
lysts sketch some proposed interfaces and ways that the needed functional-
ity might be implemented—this visual way of working allows the engineers 
and other stakeholders to c oalesce their ideas for the future product. 

Figure 2.4

A quick and dirty 
prototype built on a 
whiteboard to provide a 
rapid visual explanation 
of how some of the 
requirements might be 
implemented, and to 
clarify misunderstood or 
missing requirements.
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Scenarios

Scenarios are so useful that we have devoted the whole of Chapter 6 to them. 
Scenarios show the functionality of a business process by breaking it into a 
series of easily recognizable steps, written in English (or whatever language 
you use at work) so that they are accessible to all stakeholders. The IceBreaker 
analysts used scenarios to describe the business processes and present their 
understanding of the needed functionality. These scenarios were then 
revised as needed—different stakeholders took an interest in different parts 
of the scenario, and after a short time, the business analysts were able to have 
everyone understand and come to a consensus on what the work was to be. 

Once they are agreed, the scenarios become the foundation for the 
requirements. 

Writing the Requirements

A major problem in system development is misunderstood requirements. To 
avoid any misunderstanding, the analysts must write their requirements in 
an unambiguous and testable manner, and at the same time ensure that the 
originating stakeholder understands and agrees with the written require-
ment before it is passed on to the developers. In other words, the analysts 
write the requirements so as to ensure that parties at either end of the devel-
opment spectrum are able to have an identical understanding of what is 
needed. 

Although the task of writing down the requirements might seem an oner-
ous burden, we have found it to be the most effective way to ensure that the 
essence of the requirement has been captured and communicated, and that 
the delivered product can be tested. (See Figure 2.5.)

Refer to Chapter 6 for a 
discussion about using 
scenarios.

Figure 2.5

The requirements are 
captured in written form 
to facilitate communica-
tion between the stake-
holders, the analysts, 
and the developers (and 
anyone else who has an 
interest). By writing the 
requirements carefully, 
the team ensures that 
the correct product is 
built. 

I want it easy enough so 
my mother could use it.

The developer doesn’t know 
your mother. How about “A 
truck driver shall be able to 
select the correct route 
within 90 seconds of first 
encountering the product” ?
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The IceBreaker analysts start by writing their requirements using business 
language so that the nontechnical stakeholders can understand them and 
verify their correctness. They add a rationale to the requirements—it shows 
the background reason for the requirement, which removes much of the 
ambiguity. Further, to ensure complete precision and to confirm that the 
product designers and developers can build exactly what the stakeholder 
needs, they write a fit criterion for each requirement. A fit criterion quanti-
fies, or measures, the requirement, which makes it testable, which in turn 
allows the testers to determine whether an implementation meets—in other 
words, fits—the requirement. 

The rationale and the fit criterion make the requirement more under-
standable for the business stakeholder, who has on several occasions said, “I 
am not going to have any requirements that I do not understand, nor will I 
have any that are not useful or that don’t contribute to my work. I want to 
understand the contributions that they make. That’s why I want each one to 
be both justified and measurable.”

The business analyst has a different, but complementary, reason for mea-
suring requirements: “I need to ensure that each requirement is unambigu-
ous; that is, it must have the same meaning to both the stakeholder who 
originated it and the developer who will build it. I also need to measure the 
requirement against the stakeholder’s expectations. If I can’t put a measure-
ment to it, then I can never tell if we are building the product the stakeholder 
really needs.” 

The analysts use two devices to make it easier to write their specifica-
tion. The first device, the requirements specification template, is an outline and 
guide to writing a requirements specification. The business analysts use it as 
a checklist of the requirements they should be asking for, and as a consistent 
way of organizing their requirements documents. The second device is a 
shell, also known as a snow card. Each atomic (that’s the lowest level) require-
ment is made up of a number of attributes, and the snow card is a convenient 
layout for ensuring that each requirement has the correct constituents.

Of course, the writing process is not really a separate activity. In reality, 
it is integrated with the activities that surround it—trawling, prototyping, 
and the quality gateway. However, for the purposes of understanding what 
is involved in putting the correct requirements into a communicable form, 
we will look at it separately. 

Iterative development methods employ user stories as a way of convey-
ing the requirements. The stories are, in fact, placeholders for lower-level 
requirements; they are augmented during conversations between the devel-
opers and the stakeholders to flush out the detailed requirements. In Chap-
ter 14, Requirements and Iterative Development, we look closely at how the 
business analyst can produce better user stories. Working iteratively does not 
obviate the need for requirements, but rather seeks to discover and commu-
nicate the requirements in a different manner.

Chapter 12 describes fit 
criteria in detail. 

Refer to Chapters 10, 11, 
12, and 16 for detailed 
discussions of writing 
the requirements.
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The primary reason for wanting written requirements is not to have writ-
ten requirements (although that is often necessary), but rather to write them. 
Writing the requirement, together with its associated rationale and fit crite-
rion, clarifies it in the writer’s mind, and sets it down in an unambiguous 
and verifiable manner. To put that another way, if the business analyst can-
not correctly write the requirement, he has not yet understood it. 

Quality Gateway

Requirements are the foundation for all that is to follow in the product devel-
opment cycle. Thus it stands to reason that if the right product is to be built, 
the requirements must be correct before they are handed over to the build-
ers. To ensure correctness, the quality gateway tests the requirements (Figure 
2.6). The IceBreaker team has set up a single point that every requirement 
must pass through before it can become a part of the specification. This 
gateway is manned by two people—the lead requirements analyst and a tes-
ter—and they are the only people authorized to pass requirements through 
the gateway. Working together, they check each requirement for complete-
ness, relevance, testability, coherency, traceability, and several other quali-
ties before they allow it to be passed to the developers. 

By ensuring that the only way for requirements to be made available for 
the developers is for those requirements to pass through the quality gateway, 
the project team is in control of the requirements, and not the other way 
around. 

Chapter 13 describes 
how the quality gateway 
tests the requirements.

Figure 2.6

The quality gateway 
ensures that require-
ments are rigorous 
by testing each one 
for completeness, 
correctness, measura-
bility, absence of 
ambiguity, and several 
other attributes, before 
allowing the requirement 
to be passed to the 
developers.
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Reusing Requirements

The requirements for any product you build are never completely unique. 
We suggest that before starting on any new requirements project, you go 
through the specifications written for previous projects and look for poten-
tially reusable material. Sometimes you may find dozens of requirements 
that you can reuse without alteration. More often you will find requirements 
that, although they are not exactly what you want, are suitable as the basis 
for some of the requirements you will write in the new project. 

For example, in the IceBreaker project, the rules for road engineering 
have not changed much over the years. Thus, the requirements analysts 
working on various projects do not have to rediscover them, but can simply 
reuse them. They also know that the business of vehicle scheduling does not 
change radically over time, so their trawling process can take advantage of 
some requirements from previous projects. 

Similarly, for different projects within your organization, the non- 
functional requirements are fairly standard, so you can start with a specifi-
cation from one of the previous projects and use it as a checklist. 

The point about reusing requirements is that once a requirement has been 
successfully specified for a product, and the product itself is successful, the 
requirement does not have to be reinvented or rediscovered. In Chapter 15, 
Reusing Requirements, we discuss how you can take advantage of the knowl-
edge that already exists within your organization, and how you can save 
yourself time by recycling requirements from previous projects.

Reviewing the Requirements

The quality gateway exists to keep bad requirements out of the specifica-
tion—it does this one requirement at a time. Nevertheless, at the point when 
you think your requirements specification is complete (or as complete as you 
need it for the next activity), you should review it. This final review checks 
that there are no missing requirements, that all the requirements are con-
sistent with one another, and that any conflicts between the requirements 
have been resolved. In short, the review confirms that the specification is 
really complete and suitable so that you can move on to the next stage of 
development.

This review also offers you an opportunity to reassess the costs and risks 
of the project. Now that you have a complete set of requirements, you know a 
lot more about the product than you did at the project blastoff. In particular, 
you have a much more precise knowledge of the scope and functionality of 
the product, so this is a good time to remeasure its size. From that size, and 
from your knowledge of the project’s constraints and solution architecture, 
you can estimate the cost to construct the product. 

See Chapter 15 for 
more on reusing 
requirements.

See Chapter 17, 
Requirements 
Completeness, for 
more on reviewing the 
specification.
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You also know at this stage which types of requirements are associated 
with the greatest risks. For example, the users might have asked for an inter-
face that your organization has not built before. Or perhaps they want to use 
untried technology to build the product. Perhaps the developer might not 
have the people with the skills needed to build the product as specified? By 
reassessing the risks at this point, you give yourself a more realistic chance 
of building the desired product successfully. 

Iterative and Incremental Processes

One common misconception in the requirements world is that you have to 
gather all the requirements before moving on to the next step of design and 
construction. In other words, doing requirements means that you employ a 
traditional waterfall process. In some circumstances this is necessary, but not 
always. On the one hand, if you are outsourcing or if the requirements docu-
ment forms the basis of a contract, then clearly you need to have a complete 
requirements specification. On the other hand, if the overall architecture 
is known, then construction and delivery can often begin before all the 
requirements are discovered. We show these two approaches in Figure 2.7, 
and suggest you consider which one works best for you when working on 
your own requirements projects. We also have a lot more to say on various 
approaches in Chapter 9, Strategies for Today’s Business Analyst. 

On the IceBreaker project, the developers are ready to start building the 
product, so after the blastoff the key stakeholders select three (it could be any 
low number) of the highest-priority and greatest-value business use cases. 
The requirements analysts trawl and gather the requirements for only those 

Figure 2.7

Two (of many) variations 
on development life 
cycles. At the top of the 
figure is the traditional 
waterfall approach, in 
which the complete 
requirements document 
is put together before 
product development 
begins. At the bottom of 
the figure is an iterative 
process, in which, after a 
preliminary analysis, the 
product is developed in 
small increments. Both 
approaches achieve the 
same purpose. 
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business use cases, putting aside the rest of the work for now. Then, when 
the first tranche of requirements have successfully passed the quality gate-
way, the developers start their work. The intention is to implement a small 
number of use cases as early as possible to get the reaction of the stake-
holders—if there are going to be any nasty surprises, the IceBreaker team 
wants to get them as early as possible. While the developers are building and 
delivering the first lot of business use cases, the analysts are working on the 
requirements for the next-highest-priority ones. Soon they have established 
a rhythm for delivery, with new use cases being implemented and delivered 
every few weeks. 

Requirements Retrospective

You are reading this book about a requirements process, presumably with 
the intention of improving your own process. Retrospectives, sometimes 
known as lessons learned, are one of the most effective tools for discovering 
the good and bad of a process, and suggesting remedial action. Retrospec-
tives for requirements projects consist of a series of interviews with stake-
holders and group sessions with the developers. The intention is to canvas 
all the people involved in the project and ask these questions:

 ● What did we do right?

 ● What did we do wrong?

 ● If we had to do it again, what would we do differently?

By looking for honest answers to these questions, you give yourself the best 
chance of improving your process. The idea is very simple: Do more of what 
works and less of what doesn’t. 

Keep a record of the lessons learned from your retrospectives. While 
humans have memory and can learn from their experience to their advan-
tage in future projects, organizations don’t learn—unless you write down the 
experience. By keeping the lessons learned available in some readily acces-
sible manner, subsequent projects can learn from your accomplishments and 
mishaps. 

Your retrospective can be very informal : a coffee-time meeting with the 
project group, or the project leader collecting e-mail messages from the par-
ticipants. Alternatively, if the stakes are higher, this process can be formal-
ized to the point where it is run by an outside facilitator who canvases the 
participants, both individually and as a group, and publishes a retrospective 
report. 

The most notable feature of retrospectives is this: Companies that regu-
larly conduct retrospectives consistently report significant improvements in 
their processes. In short, retrospectives are probably the cheapest investment 
you can make in improving your own process. 

“If we did the 
project again 
tomorrow, what 
would we do 
differently?”
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Evolution of Requirements 

You start a project with little more than a vision—and sometimes a fairly 
blurred vision—of the desired future state of your owner’s work. (As we have 
done elsewhere in this book, we use the term “work” to refer to the area of 
the owner’s organization where improvements are to be made, usually by 
automating or re-automating part of it.) 

During the early stages of requirements discovery, analysts deploy models 
of varying degrees of formality to help them and the stakeholders to learn 
what the work is, and what it is to be. From this investigation of the work, 
everyone arrives at the same level of understanding such that the stakehold-
ers find improvements that will be truly beneficial. 

It helps enormously when coming to an understanding of the work if 
the analysts and stakeholders can see the essence of the work. The essence 
is an abstraction of the work that sees the underlying policy of the work 
without the technology that clouds our vision of what the work actually is. 
This “thinking above the line,” as we call it in Chapter 7, Understanding the 
Real Problem, is important if the requirements are not to merely replicate 
whatever it is that exists at the moment, and if “technological fossils” and 
inappropriate process are not to be inadvertently reimplemented. 

The understanding of the work evolves and matures, and at some point 
it is possible for the stakeholders, guided by the business analysts and the 
systems architects, to determine the optimal product to improve that work. 
When this stage is reached, the business analysts determine the detailed 
functionality for the product (keep in mind that not all of the work’s func-
tionality would be included in the product) and to write its requirements. 
The non-functional requirements are derived at roughly the same time and 
written along with those constraints that are not already recorded. At this 
point, the requirements are written in a technologically neutral manner—
they specify what the product has to do for the work, but not how the tech-
nology will do it. 

You can think of these requirements as “business requirements,” meaning 
that they specify the product needed to support the business. Once they are 
adequately understood, they are released to the designer, who adds the prod-
uct’s technological requirements before producing the final specification for 
the builders. This process is illustrated in Figure 2.8. 

We have said that the requirements evolve, but this process should not 
be thought of as an inexorable progression toward some known destination. 
As Earl Beede points out, every time you think of a solution, it causes some 
new problems that require you to backtrack and revisit some of your earlier 
work. When we are talking about a requirements process, keep in mind that 
the process, if it is to be useful, must allow you to move backward as well 
as forward. Naturally, you would like to spend most of your time moving 
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forward, but don’t be too disappointed if you have to return to some things 
you thought you had put behind you. 

The Template

It is easier to write requirements, and far more convenient, if you have a 
guide to writing them. Appendix A of this book provides The Volere Require-
ments Specification Template, which is a complete blueprint for describing 
your product’s functionality and capabilities. This template, which is a dis-
tillation of literally hundreds of requirements specifications, is in use by 
thousands of organizations all over the world. 

It is convenient to categorize requirements into several types—each of the 
template’s sections describes a type of requirement and its variations. Thus, 
as you discover the requirements with your stakeholders, you add them to 
your specification, using the template as a guide to necessary content. 

The template is designed to serve as a sophisticated checklist, providing 
you with a list of what to write about, and suggestions on how to write about 
them. The table of contents for the template is reproduced here, and we will 
discuss each section in detail later in the book.

Our associate, Stephen Mellor, suggests using the template by going 
directly to the most pressing sections—the ones that seem to you to be most 

The complete Volere 
Requirements Specifica-
tion Template is found in 
Appendix A.
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useful—and then revisiting the template as needed. You will probably use 
most of it, but it is not—really not—a template that you fill by starting on 
page one and working through to the bitter end. Like any good tool, when 
used wisely the template provides a significant advantage to your require-
ments discovery. 

Here, then, is the content of the template. 

Project Drivers—reasons and motivators for the project 

1 The Purpose of the Project—the reason for making the investment 
in building the product and the business advantage that you want to 
achieve by doing so 

2 The Client, the Customer, and Other Stakeholders—the people 
with an interest in or an influence on the product 

3 Users of the Product—the intended end users, and how they affect 
the product’s usability 

Project Constraints—the restrictions on the project and the product

4 Requirements Constraints—the limitations on the project, and the 
restrictions on the design of the product 

5  Naming Conventions and Definitions—the vocabulary of the 
project

6 Relevant Facts and Assumptions—outside influences that make 
some difference to this product, or assumptions that the developers 
are making

Functional Requirements—the functionality of the product

7 The Scope of the Work—the business area or domain under study

8 The Scope of the Product—a definition of the intended product 
boundaries and the product’s connections to adjacent systems

9 Functional and Data Requirements—the things the product must 
do and the data manipulated by the functions 

Non-functional Requirements—the product’s qualities 

10 Look and Feel Requirements—the intended appearance 

11 Usability and Humanity Requirements—what the product has to be 
if it is to be successfully used by its intended audience

12 Performance Requirements—how fast, big, accurate, safe, reliable, 
robust, scalable, and long-lasting, and what capacity
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13 Operational and Environmental Requirements—the product’s 
intended operating environment

14 Maintainability and Support Requirements—how changeable the 
product must be and what support is needed

15  Security Requirements—the security, confidentiality, and integrity 
of the product 

16 Cultural Requirements—human and sociological factors

17 Legal Requirements—conformance to applicable laws 

Project Issues—issues relevant to the project that builds the product

18 Open Issues—as yet unresolved issues with a possible bearing on the 
success of the product 

19 Off-the-Shelf Solutions—ready-made components that might be 
used instead of building something from scratch

20 New Problems—problems caused by the introduction of the new 
product 

21 Tasks—things to be done to bring the product into production 

22 Migration to the New Product—tasks to convert from existing 
systems 

23 Risks—the risks that the project is most likely to incur

24 Costs—early estimates of the cost or effort needed to build the product

25 User Documentation—the plan for building the user instructions 
and documentation

26 Waiting Room—requirements that might be included in future 
releases of the product 

27 Ideas for Solutions—design ideas that we do not want to lose

Browse through the template in Appendix A before you go too much fur-
ther in this book. You will find a lot of information about writing require-
ments, plus much food for thought about the kinds of requirements you are 
looking for. 

Throughout this book, we will refer to requirements by their type—that 
is, one of the types as shown in the template’s table of contents. 

The Snow Card

Whereas the template is a guide to what to write about, the snow card is a 
guide to how to write it. Individual requirements have a structure—a set of 
attributes, where each attribute contributes something to your understanding 
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of the requirement, and to the precision of the requirement, and thereby to 
the accuracy of the product’s development. 

Before we go any further, we must point out that although we call this 
device a card, and we use cards in our courses, and this book is sprinkled 
with diagrams featuring this card, we are not advocating writing all your 
requirements on cards. Some good things can be realized by using cards 
when interviewing stakeholders and quickly scribbling requirements as they 
come to light. Later, these requirements are recorded in some electronic 
form; at that time, their component information is filled in. Thus any refer-
ence to “card” should be taken to mean (probably) a computerized version. 

At first glance, the card might seem rather bureaucratic. (See Figure 2.9.) 
We are not seeking to add to your requirements burden, but rather to pro-
vide a way of accurately and conveniently gathering the needed informa-
tion—each of the attributes of the snow card makes a contribution. We shall 
explain these as we work our way through this book. 

Any number of 
automated tools 
are available 
for recording, 
analyzing, 
and tracing 
requirements.

Figure 2.9

The requirements shell 
or snow card, consisting 
of a 5-inch by 8-inch 
card, printed with the 
requirement’s attributes, 
that is used for our 
initial requirements 
gathering. Each of the 
attributes contributes 
to the understanding 
and testability of the 
requirement. Although a 
copyright notice appears 
on the card, we have no 
objections to any reader 
making use of it for his 
or her requirements 
work, provided the 
source is acknowledged.
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Your Own Requirements Process

The itinerant peddler of quack potions, Doctor Dulcamara, sings the praises 
of his elixir—it is guaranteed to cure toothache, make you potent, eliminate 
wrinkles and give you smooth beautiful skin, destroy mice and bugs, and 
make the object of your affections fall in love with you. This rather fanciful 
libretto from Donizetti’s opera L’elisir d’amore points out something that, 
although very obvious, is often disregarded: There is no such thing as the 
universal cure. 

We really would like to be able to present you with a requirements process 
that has all the attributes of Doctor Dulcamara’s elixir—a process that suits 
all projects for all applications in all organizations. We can’t. We know from 
experience that every project has different needs. However, we also know 
that some fundamental principles hold good for any project. So instead of 
attempting to provide you with a one-size-fits-all magic potion, we have dis-
tilled our experiences from a wide variety of projects to provide you with a 
set of foundation activities and deliverables that apply to any project. 

The process described in this book is made up of the things you have to 
do to successfully discover the requirements. Likewise, the deliverables pre-
sented here are the foundation for any kind of requirements activity. Our 
intention is not to say that there is only one true path to requirements Nir-
vana, but rather to give you the components you need for successful require-
ments projects. 

As you read this book, think about how you can use these components 
within the constraints of your own culture, your own environment, your own 
organizational structure, and your own chosen way of product development. 

To adapt this process, you should understand the deliverables it pro-
duces—the rest of this book will discuss these items in detail. Once you 
understand the content and purpose of each deliverable, ask how each one 
(provided it is relevant) would best be produced within your project environ-
ment using your resources:

 ● What is the deliverable called within your environment? Use the defi-
nitions of the terms used in the generic process model and identify 
the equivalent deliverable in your organization.

 ● Is this deliverable relevant for this project?

 ● How much do you already know about this deliverable? Do you know 
enough to be able to avoid devoting additional time to it?

 ● Who produces the deliverable? Understand which parts of the deliver-
able are produced by whom. Also, when several people are involved, 
you need to define the interfaces between them.

 ● When is the deliverable produced? Map your project phases to the 
generic process.

We have distilled 
experience from 
a wide variety of 
projects to provide 
you with a set of 
foundation activities 
and deliverables 
that apply to any 
project.
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development; it certainly is 
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 ● Where is the deliverable produced? A generic deliverable is often the 
result of fragments that are produced in a number of geographical 
locations. Define the interfaces between the different locations and 
specify how they will work. 

 ● Who needs to review the deliverable? Look for existing cultural 
checkpoints within your organization. Do you have recognized stages 
or phases in your projects at which peers, users, or managers must 
review your specification? 

The generic model describes deliverables and procedures for producing 
them; our intention is that you decide how you use them. 

We also point you to Chapter 9 of this book, entitled Strategies for Today’s 
Business Analyst. This chapter considers how you might approach your 
requirements projects. We suggest that before you become too involved in 
the mechanics of requirements discovery, you think about the strategy that 
is most suitable for you. 

Formality Guide 

There is every reason to make your requirements discovery and communica-
tion as informal as possible. We say “as possible” because it is not so much 
what you would like as what your situation demands—often the degree of 
formality will be dictated by factors beyond your control. For example, you 
may be developing software using contracted outsourced development. In 
this case, there is a clear need for a complete written requirements specifica-
tion. In other cases, the way you communicate your requirements can be 
informal to the point that a portion of the requirements are not written, or 
partially written, and communicated verbally. 

We have included a formality guide to suggest where you might take a 
more relaxed approach to recording requirements, as well as those times 
when you should rightly be more systematic with your requirements discov-
ery and communication. These are the conventions you will encounter as 
you move through this book. 

Rabbit—small, fast, and short-lived. Rabbit projects are typically smaller 
projects with shorter lifetimes, where close stakeholder participation is pos-
sible. Rabbit projects usually include a lesser number of stakeholders. 

Rabbit projects are usually iterative. They discover requirements in small 
units (probably one business use case at a time) and then implement a small 
increment to the working functionality, using whatever has been imple-
mented to solicit feedback from the stakeholders. 

Rabbit projects do not spend a great deal of time writing the require-
ments, but use conversations with the stakeholders as a way to elaborate 
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the requirements written on story cards. Rabbit projects almost always co-
locate the business knowledge stakeholders with the business analysts and 
the developers. 

Horse—fast, strong, and dependable. Horse projects are probably the 
most common corporate projects—they are the “halfway house” of formal-
ity. Horse projects need some formality—it is likely that there is a need for 
written requirements so that they can be handed from one department to 
another. Horse projects have medium longevity and involve more than a 
dozen stakeholders, often in several locations, factors that necessitate con-
sistently written documentation. 

If you cannot categorize your own project, think of it as a horse. 

Elephant—solid, strong, long life, and a long memory. An elephant proj-
ect has a need for a complete requirements specification. If you are outsourc-
ing the work, or if your organizational structure requires complete, written 
specifications, you’re an elephant. In certain industries, such as pharmaceu-
ticals, aircraft manufacture, or the military, regulators demand not only that 
full specifications be produced, but also that the process used to produce 
them be documented and auditable. Elephant projects typically have a long 
duration, and they involve many stakeholders in distributed locations. There 
are also a large number of developers, necessitating more formal ways of 
communicating. 

The Rest of This Book

We have described—briefly—a process for discovering, communicating, and 
verifying requirements. The remainder of this book describes the various 
activities in this process, along with their deliverables, in some detail. Feel 
free to jump to any chapter that is of immediate concern—we wrote the 
chapters in more or less the order in which you would do each of the activi-
ties, but you don’t have to read them that way. 

And please, while you are reading this book, be constantly asking yourself 
how you will do the things we describe. After all, it is you who has to do them. 

We hope find useful ideas, processes and artifacts, in the rest of this book. 
We also hope you enjoy reading and using it. 
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vs. solutions, 315
templates for. See Volere requirements 

specification template
trawling for. See Trawling for requirements
truths, 1, 5–6, 9
types of, 249–250, 395–396
writing, 20–22, 353-357

Requirements bait, 110
Requirements creep, 317–319
Requirements Definition activity, 211–212, 214
Requirements knowledge model, 355–356
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Requirements profiles, 204–205
Requirements skills

business rules, 218–219
ideas brokering, 219–220
innovation, 218
strategies, 215–222
systemic thinking, 220–221
visualization, 221–222

Resources
function point counting, 492–494
requirements for, 258

Responses to events, 189, 344–345
Responsiveness to customers, 188
Retrospectives, 25
Reusable components, 459
Reusable requirements, 106–107
Reusing requirements, 23

description, 338–341
domain analysis in, 351
overview, 337–338
patterns in. See Patterns
skills for, 217–218
sources of, 341–342

Revenue goals in specification templates, 399
Reverse-engineering

document archeology, 123
essence, 151

Reviewing requirements specifications. See 
Completeness requirements

Reward in value, 165–166
Right problem, solving, 156–157
Risks and risk analysis, 63

in blastoff, 37
completeness reviews for, 388–390
constraints, 390
of damage, 258
drivers, 389–390
functional requirements, 390
reviewing, 23
in scoping, 62–63
in solutions, 194–195
in specification templates, 465–467

Robotics, laws of, 258
Robustness requirements, 258, 445
Roles in iterative development, 333–335
Rules

business, 218–219
maintainability requirements for, 261

S

Sabotage, 315
Safety-critical requirements, 442–443
Safety inspectors as stakeholders, 52

Safety requirements, 258
Saint-Exupery, Antoine de, 153
Sarbanes-Oxley Act (SOX), 269–270
Satellite broadcasting domain, 348–349
Satisfaction, customer

atomic requirements, 363–364
Quality Gateway for, 316–317

Scalability requirements, 258, 446
Scale of measurement for fit criteria, 285–286
Scandals, financial, 269–270
Scenarios, 129

airline check-in agent, 131–140
alternative cases, 139–140, 145
business use case workshops, 101
diagramming, 138–139
exception cases, 140–141, 145
formality guide for, 129–130
functional requirements, 239
negative, 142–143
normal case, 135
in process, 20
product use cases, 196–199
templates for, 131, 143–145
what if?, 142

Schedules as constraints, 413
Scope

in blastoff, 36
boundaries, 429–431
business use cases, 70–73, 82–83, 375–377
external strategy, 207
first-cut work context, 42–43
in function point counting, 481–482
in functional requirements, 237, 420–425
innovation workshops, 172
iterative strategy, 210–211, 213
lead requirements analysts for, 16
product, 180–181, 429–432
Quality Gateways, 307–311
in reusing requirements, 339
risk analysis, 390
specification templates, 420–425
in systemic thinking, 164
in trawling, 97

Scoping business problem, 35
blastoff, 35–37
blastoff meetings, 64–65
case study, 41–43
constraints, 59–60
costs, 61–62
external strategy, 207
formality guide, 38
go/no go decisions, 63–64
goals, 54–59
iterative strategy, 210–211, 213
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Scoping business problem (continued )
naming conventions and definitions, 60–61
risks, 62–63
scope setting, 38–41
stakeholders. See Stakeholders
trinity, 43–44

Security requirements, 263, 273
access, 263, 451–452
“and no more,” 265–266
auditing, 265, 454
fit criteria for, 294
immunity, 454
integrity, 264, 452–453
privacy, 263–264, 453

Seddon, John, 162, 164
Self-documentation in legal requirements, 269
Self-referential approach, 167
Seminars for specification templates, 395
Separating work from environment, 40–41
Service goals in specification templates, 399
Service technicians in specification templates, 

407
Shared commitment, 323
SharePoint, 116, 367
Shells

requirements, 359
for specifications, 21, 396

“Should,” avoiding, 388
Simulations for subjective tests, 289
Sketches

interface, 188–189
overview, 109–115

SMART (Specific, Measurable, Attainable, 
Relevant and Timebound) management 
technique, 64

Smartphones addiction, 185
Snow cards

atomic requirements, 359–361
iterative development, 327
for specifications, 21
user stories, 331–332
working with, 29–30

Sobel, Dava, 353
Software

errors in, 306
look and feel, 251
off-the-shelf products. See Off-the-shelf (OTS) 

products
for prototypes, 115
safety requirements, 258
truths, 2–4

Solutions and solution constraints, 59, 177–178
adjacent systems, 190–194
conclusion, 199–201

cost information, benefits, and risks, 194–195
document design decisions, 195–196
essential business, 179–180
fit criteria for, 279, 300
innovation, 184–188
iterative development, 179
origins of business events, 189–190
product extent, 180–181
product use case scenarios, 196–199
vs. requirements, 276–277
sketching interface, 188–189
in specification templates, 407–409, 471
user considerations, 181–184

Sorting prioritization categories, 384
Sound measurements, 285
Soviet Style products, 246
SOX (Sarbanes-Oxley Act), 269–270
Special-interest groups, 53
Specialized words in functional requirements, 

235
Specific, Measurable, Attainable, Relevant 

and Timebound (SMART) management 
technique, 64

Specifications, 217
for functional requirements, 225
reviewing. See Completeness requirements
templates for. See Volere requirements 

specification template
tools for, 21

Speed requirements, 187, 257, 441–442
Spelling in cultural requirements, 268
Sponsors as stakeholders, 45–47
Spreadsheets, 385–386
Stahl, Leslie Hulet, 121
Stakeholder knowledge class, 503–504
Stakeholders, 44–45

acceptability of requirements to, 315
in blastoff, 37
Brown Cow Model, 159
completeness tests for, 312
customers as, 47–48
finding, 54
in functional requirements, 233
identifying, 16
interviewing, 102–106
management templates, 473–477
maps, 473–474
miscellaneous, 50–54
prototypes for, 111, 113–115
in reusing requirements, 339–340
in risk analysis, 389
for scenarios, 131, 133–134, 144
specification templates, 400–407
sponsors, 45–47
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in trawling, 91–92
users as, 48–50

Standard setters as stakeholders, 52–53
Standards

branding, 251, 290
fit criteria, 289–290
legal requirements, 271
in specification templates, 456–457

Stored data in function point counting, 482–
483, 489–492

Stories. See Scenarios
Story cards, 239–240
Strategies, 203

determining, 215
external, 206–209
iterative, 210–212
knowledge, activities, and people in, 204
knowledge requirements, 205–206
progressive, 212–214
project requirements profiles, 204–205
requirements skills, 215–222

Strengths, Weaknesses, Opportunities, and 
Threats (SWOT) management technique, 
64

Style requirements, 436
Subject-matter experts

iterative development, 333
as stakeholders, 51

Subjective interpretation, 313
Subjective tests, fit criteria for, 289
Subtypes in function point counting, 489–490
Sullivan, Wendy, 106
Support requirements, 261–262, 273, 450
Supporting association, 508
Supporting materials in atomic requirements, 

365
Swim lanes, 154–156
SWOT (Strengths, Weaknesses, Opportunities, 

and Threats) management technique, 64
System Architecture Component knowledge 

class, 504
Systemic thinking, 162–164, 220–221
Systems

adjacent. See Adjacent systems
business events, 76–77
business use cases, 70

T

Tables of contents in templates, 27, 357–358, 
393–394

Tasks in specification templates, 462–463
Team review in Quality Gateway, 321

Technical experts as stakeholders, 53
Technical knowledge in iterative development, 

334–335
Technicians in specification templates, 407
Technological fossils, 76
Technological Requirement knowledge class, 

504
Technological requirements, 225, 237
Technological skills, 315
Technology

in problem statements, 151–152
for wikis, 22

Templates, 27–29
non-functional requirements, 274
scenarios, 131, 143–145
specifications. See Volere requirements 

specification template
stakeholders management, 473–477

Terms and terminology
ambiguous, 388
blastoff for, 37
functional requirements, 234–237
Quality Gateway for, 313–314
specification templates, 415–416
stakeholder interviews, 103

Test cases
functional requirements, 296
iterative development, 327

Test knowledge class, 504–505
Testability

fit criteria for, 396
of goals, 399
of requirements, 8–9

Testing
completeness, 311–312
extreme programming, 280
fit criteria, 280, 312–313
Quality Gateways for, 22
requirements, 396

Testing association, 508
Texting, 185
Thinking, importance of, 8
Thought organization, mind maps for, 117
Three strikes approach, 277
Throughput requirements, 258
Throwaway prototypes, 110
Time constraints in blastoff, 60
Time in product failure measurements, 288
Time-triggered business events, 74–75
Time-triggered business use cases, 487–488
Tolerances

for fit criteria, 284–285
in subjective tests, 289



540 ● Index

Tower of Babel, 314
Training in specification templates, 469–470
Translated data for new systems, 465
Translators, analysts as, 91
Trawling for requirements, 17–18, 87–88

analysts for, 91–92
apprenticeships in, 98–99
Brown Cow Model, 93–97
business use case workshops, 99–102
business use cases, 92
current situation in, 94–97
diagrams, 92
document archeology in, 123–124
family therapy, 125
formality guide for, 89
interviews, 102–106
for knowledge, 89–90, 126
mind maps, 116–119
modeling, 107–109
murder books, 119–120
observations, 98–99
photographs, 120–121
prototypes and sketches, 109–116
reusable requirements, 106–107
techniques, 125–129
video, 120–121
wikis, blogs, and discussion forums, 122

Triage in prioritizing requirements, 384
Triggers

business use cases, 133–134
innovation, 184
scenario templates, 144

Trust, 187
Tufte, Edward, 221
Typeface measurements, 285
Types, requirement, 249–250, 361, 395–396

U

Uncertainty range in function point counting, 
492

Understandability requirements, 440–441
Unduplicated attributes, 488
Unified Modeling Language (UML)

activity diagrams, 138, 240
use case diagrams, 483

Universal cures, 31
Unnecessary features and requirements, 317
Unqualified adjectives and adverbs, 388
Update step in CRUD checks, 380–381
Usability requirements, 49

accessibility, 441
ease of use, 437–438

fit criteria for, 291–292
learning, 439–440
overview, 253–257
personalization and internationalization, 

438–439
understandability and politeness, 440–441

Use cases
business. See Business use cases (BUCs)
fit criteria in, 299
non-functional requirements, 248–249, 

272–274
product. See Product use cases (PUCs)
in scope, 431–432
UML use case diagrams, 483

User business in specification templates, 397–398
User documentation in specification templates, 

468–469
User experience

designing, 183–184
solutions, 201

User-friendliness as requirement, 282–283
User management as stakeholder, 46
User problems for new products, 461
User stories

fleshing out, 332–333
formalizing, 331–332
functional requirements, 239–240
iterative development, 325–326, 329–333
questions, 329–331

Users
priorities, 405–406
in reusing requirements, 339
in risk analysis, 389–390
in solutions, 181–184
in specification templates, 403–404, 406
as stakeholders, 48–50
understanding of requirements by, 9

V

Value
overview, 165–166
in solutions, 195

Value demand, 164
Verbs, 106
Version numbers, 383
Viability within constraints, 314–315
Viable goals, 57
Video records, 120–121
Viruses, 266
Visualization, 221–222
Volere Requirements Process Model overview, 

11–12
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Volere requirements specification template, 357
assembling, 365–366
assumptions in, 418–419
atomic requirements, 359–365
automated tools, 366–367
for completeness reviews, 374
constraints in, 407–415
data dictionaries, 427–429
data model, 425–427
data requirements in, 433–434
divisions, 358–359
facts in, 416–417
functional requirements, 367–368, 433–434
naming conventions and definitions, 

415–416
non-functional requirements, 368–369, 

435–457
product scope, 429–432
project issues, 369, 457–471
purpose, 397–400
requirements types, 395–396
shell in, 396
stakeholders, 400–407
tables of contents, 357–358, 393–394
testing requirements, 396
use of, 394
work scope, 420–425

W

Waist-High Shelf pattern, 343
Waiting room, 470–471
Warning messages, 269
Waterfall process, 324
Web-based products, 252

Weights for prioritizing requirements, 385
What element in Brown Cow Model, 150
What if? scenarios, 142
What-Now view in Brown Cow Model, 93
Whiteboards, 107
Wider environment in stakeholder maps, 45
Wikis

non-functional requirements, 271
trawling, 122

Wittenberg, Ethel, 294
Word processors, 366–367
Words. See Terms and terminology
Work

business use cases, 70–72
context, 42–43, 92
in iterative development, 324, 327
partitioning. See Partitions
reengineering, 97
in scope, 39

Work area measurements, 480–481
Work investigation activity

external strategy, 207–209
iterative strategy, 210–214

work scope diagrams, 41–43
Work Scope knowledge class, 505
Working models in trawling, 94
Workplace environment, constraints from, 412
workshops

business use cases, 99–102
innovation, 171–172
use case, videos for, 121

Writing requirements, 20–22, 353
formality guide, 353–354
knowledge vs. specification in, 353–357
potential requirements, 354
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