Н.Е. Мантурова Л.С. Круглова А.Г. Стенько

РУБЦЫ КОЖИ

КЛИНИЧЕСКИЕ ПРОЯВЛЕНИЯ, ДИАГНОСТИКА И ЛЕЧЕНИЕ

ОГЛАВЛЕНИЕ

Список сокращений и условных обозначений	4
Предисловие	
Глава 1. Физиология кожи и патогенез формирования рубцов	6
1.1. Строение кожи и репаративные процессы	
1.2. Механизмы образования рубцов и особенности	
клинической картины	20
1.3. Классификация рубцов	44
Глава 2. Гипертрофические рубцы	47
2.1. Консервативные методы	
2.2. Малоинвазивные методы	
2.3. Аппаратные методы	
2.4. Лазерная терапия	
2.5. Хирургические методы	
2.6. Постожоговые рубцы	77
2.7. Протоколы лечения	79
Глава 3. Келоидные рубцы	96
3.1. Консервативные методы	
3.2. Малоинвазивные методы	
3.3. Аппаратные методы	
3.4. Лазерная терапия	
3.5. Хирургические методы	
3.6. Протоколы лечения	
Глава 4. Атрофические рубцы	116
4.1. Пилинг и криотерапия	
4.2. Малоинвазивные методы	
4.3. Аппаратные методы	
4.4. Лазерная терапия	
4.5. Хирургические методы	
4.6. Протоколы лечения	
Глава 5. Рубцы постакне	154
5.1. Патогенез, клиническая картина, классификация.	
5.2. Методы терапии и профилактики	
 5.3. Протоколы лечения 	
Список литературы	
Предметный указатель	

СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ

- торговое название лекарственного средства и/или фармацевтическая субстанция
- лекарственное средство не зарегистрировано в Российской Федерации

ВЛИ — высокоинтенсивная лазерная терапия

ГКС — глюкокортикостероиды

ДНК — дезоксирибонуклеиновая кислота

ЕД — единица действия

ИЛК — импульсный лазер на красителях

КИП — контурная инъекционная пластика

МЕ — международная единица

РНК — рибонуклеиновая кислота

BBL (broad band light) — широкополосный свет

IPL (intensive pulse light) — интенсивный импульсный свет

PRP (platelet rich plasma) — аутологичная плазма с тромбоцитами

RF (radio frequency) — радиочастотное излучение

ПРЕДИСЛОВИЕ

Рубцовые деформации (рубцы) являются одной из наиболее часто встречающихся патологий на приеме у врача-косметолога. Патогистологическая картина, цвет, форма рубцов многообразны. Они могут быть гипертрофическими и келоидными (возвышаются над окружающей тканью) или атрофическими (западают), различной окраски — от красных до беловатых и голубых, различной формы, но отличительной особенностью является выраженное отрицательное влияние на психоэмоциональный статус пациентов и качество их жизни. Изучение физиологии кожи и механизмов репаративных процессов, разработка новых терапевтических технологий позволяют сегодня достаточно успешно справляться с этой проблемой.

В книгу вошли материалы, охватывающие различные аспекты патогенеза, клинической картины и, безусловно, терапии. В первой главе отражены общие вопросы строения кожи, патогенез формирования и клиническая характеристика рубцов. В главах практической направленности приведен широкий арсенал медикаментозной терапии, хирургических и аппаратных методов, которые позволяют добиваться высоких результатов. Для практикующих врачей, которым и адресовано данное руководство, основными являются алгоритмы терапии, наиболее рациональные схемы лечения, возможности сочетанных и комбинированных методик, которые изложены применительно к каждому виду рубцовых деформаций. Поскольку одни и те же методы используются по различным показаниям, подробное их описание содержится при первом упоминании в тексте. В отдельной главе рассмотрены вопросы рубцов постакне ввиду специфики не только клинической картины, но и методов лечения.

Структура книги, подразумевающая подразделение рубцов в соответствии с клинической картиной, в значительной степени упрощает поиск необходимой информации и представляет собой идеальный интегративный подход для проведения дифференциальной диагностики и выбора тактики ведения пациента.

Глава 1

ФИЗИОЛОГИЯ КОЖИ И ПАТОГЕНЕЗ ФОРМИРОВАНИЯ РУБЦОВ

1.1. СТРОЕНИЕ КОЖИ И РЕПАРАТИВНЫЕ ПРОЦЕССЫ

Кожа (*cutis*) формирует общий покров (*integumentum commune*) тела и состоит из эпидермиса, дермы, гиподермы, содержит чувствительные нервные окончания, потовые и сальные железы, мышцы, дериваты кожи (волосяные фолликулы и матрикс ногтевых пластин) (рис. 1.1). Площадь кожного покрова у взрослого человека составляет от 1,5 до 2 м².

Кожа выполняет защитную функцию (механическую, иммуноопосредованную), участвует в теплорегуляции и обмене веществ, является органом выделения и дыхания и обширной поверхностью рецепции.

Кожа состоит из 3 слоев: эпидермиса и собственно кожи (дерма) (*corium*), которая переходит в подкожную клетчатку (гиподерма) (*tela subcutanea*).

Эпидермис (epidermis) имеет эктодермальное происхождение и является производным наружного зародышевого листка. Толщина эпидермиса варьирует от 0,07 до 0,4 мм: наименьшая толщина эпидермиса отмечается в области век, крайней плоти; наибольшей толщины эпидермис достигает в области ладоней и подошв.

Эпидермис состоит из многослойного (плоского) эпителия. Кератиноциты — основные клетки кожного эпидермиса (85% от эпидермоцитов), они содержат белок кератин, который совместно с коллагеном и эластином придает коже упругость и прочность (рис. 1.2).

В течение процесса морфологической дифференцировки клетки эпидермиса кожи постепенно увеличиваются в размерах,

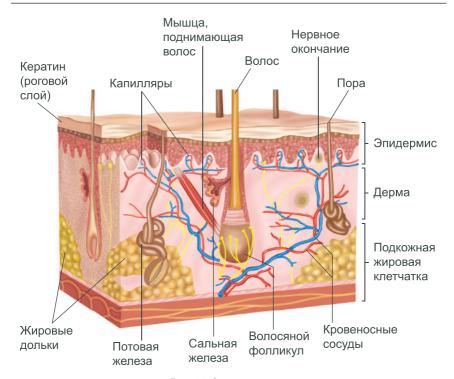


Рис. 1.1. Строение кожи

уплощаются и ороговевают: происходит накопление кератогиалина — предшественника кератина. В конце концов ядра и цитоплазматические органоиды исчезают, обмен веществ прекращается, и наступает апоптоз. В норме митотический индекс составляет 0,1—1,0 на 1000 клеток, при этом длительность полного цикла составляет в среднем 4 нед. Относительно медленный процесс кератинизации резко увеличивается при патологических состояниях (при травмах, некоторых заболеваниях). Митотический индекс базальных клеток при этом возрастает до 50 на 1000, а процесс кератинизации завершается в течение 34—48 ч.

В эпидермисе выделяют пять слоев. Самый глубокий слой эпидермиса, состоящий из рядов клеток, имеющих призматическую форму и прилегающих непосредственно к собственно коже, выделяется как базальный слой (цилиндрический) (stratum

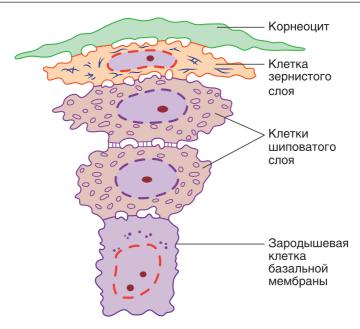


Рис. 1.2. Морфологическая дифференцировка кератиноцитов

basale (cylindricum). В нем в процессе деления клеток появляются новые клетки, постепенно замещающие клетки самого поверхностного ороговевшего слоя. Базальные кератиноциты характеризуются двумя основными функциональными особенностями — максимальной митотической активностью и активным синтезом фибриллярного белка. Через базальную мембрану из сосудов дермы осуществляются питание, снабжение кислородом и выведение продуктов жизнедеятельности клеток эпидермиса. В базальном слое располагаются меланоциты — пигментообразующие клетки. Над базальным слоем залегает шиповатый **слой** (*stratum spinosum*) — клетки с цитоплазматическими мостиками («шипами»). Шиповатые кератиноциты имеют полигональную форму и отделены друг от друга межклеточными промежутками. В шиповатом слое расположены иммунокомпетентные клетки, например клетки Лангерганса. Часть клеток шиповатого слоя способны к делению, поэтому шиповатый и базальный слои объединяют в ростковый слой, а делящиеся клетки называют стволовыми клетками кожи. Над ростковым расположен зернистый слой (*stratum granulosum*), состоящий из нескольких рядов клеток, содержащих в протоплазме гранулы кератогиалина. Над зернистым слоем располагается блестящий слой (*stratum lucidum*), образованный 3—4 рядами клеток, заполненных особым блестящим веществом элеидином. В наружном роговом слое (*stratum corneum*) происходит процесс ороговения (рис. 1.3).

Кроме кератиноцитов в эпидермисе расположены: клетки Лангерганса, относящиеся к системе фагоцитирующих мононуклеаров; клетки Меркеля, тесно связанные с нервными окончаниями; меланоциты, а также интраэпидермальные Т-лимфоциты, обладающие свойствами естественных киллеров.

Клетки Лангерганса представляют собой дендритные клетки, происходящие из костного мозга, локализующиеся преимущественно в эпидермисе, а также в дерме и лимфатических узлах. В базальном слое эпидермиса они составляют 3—4% общего количества эпидермоцитов (800 клеток на 1 см²). Клетки Лангерганса относятся к иммунокомпетентным клеткам и выполняют функцию макрофагов, служат микроокружением для Т-лимфоцитов и играют основную роль в организации защитной роли Т-лимфоцитов.

Клетки Меркеля расположены в базальном слое, по объему они больше кератиноцитов, имеют округлую форму и светлую цитоплазму. К клеточным оболочкам клеток Меркеля вплотную примыкают безмиелиновые нервные волокна (рис. 1.4). Полагают, что с клетками Меркеля связана механочувствительная функция кожи.

Меланоциты — эпидермальные дендритные клетки, которые содержат тирозиназу и вырабатывают меланин. Располагаются между базальными кератиноцитами (один меланоцит соединяется более чем с 30 кератиноцитами, формируя эпидермальную меланиновую единицу), при этом каждая десятая базальная клетка — меланоцит. Число меланоцитов в коже увеличивается при хроническом воздействии ультрафиолета, но снижается с возрастом. В зависимости от пигментации кожи выделяют 6 фототипов (рис. 1.5).

Меланоциты способны оказывать влияние на ангиогенез, воспалительные реакции и фиброзирование после травматизации кожи. Они тесно взаимодействуют с фибробластами в совместной регуляции репарации кожи. Кератиноциты регулируют меланогенез

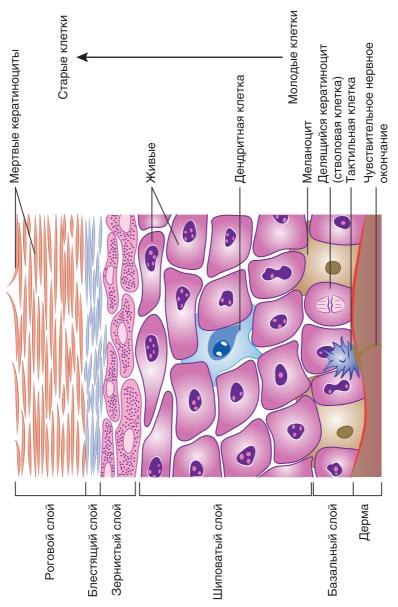


Рис. 1.3. Структура эпидермиса

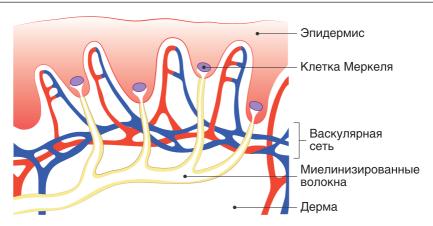


Рис. 1.4. Расположение клеток Меркеля

за счет секреции паракринным путем факторов роста A-MSH (melanocyte-stimulating hormones — меланоцит-стимулирующие гормоны), эндотелин-1, фактор стволовых клеток (SCF — stem cell factor), различных цитокинов. Фибробласты — за счет секреции рас-

Рис. 1.5. Отличие фототипов кожи

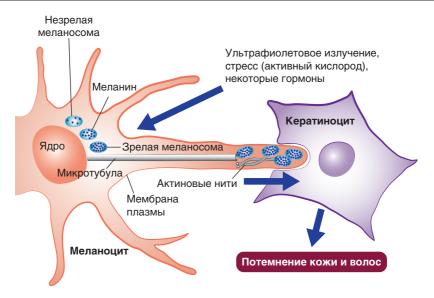


Рис. 1.6. Механизм передачи меланина

творимых факторов, например фактора роста гепатоцитов (HGF — hepatocyte growth factor), фактора стволовых клеток (SCF) (рис. 1.6).

Клетки Лангерганса расположены в ростковом слое кожи и имеют древовидную форму. Образуются в костном мозге. Способны мигрировать из эпидермиса в дерму и региональные лимфатические узлы. Основная функция — иммунная защита: фагоцитоз и транспорт антигенов в ближайшие лимфатические узлы, выработка иммунной реакции (в том числе аллергической) и иммунной памяти; противовирусная и противораковая защита; эндокринная функция: синтез биологически активных веществ — (интерферонов, интерлейкинов и т.д.). Количество клеток Лангерганса снижается при старении организма, после ультрафиолетового облучения, интоксикации и хронических заболеваний.

Между эпидермисом и дермой проходит граница, которая имеет вид волнистой или зубчатой линии; она образована отростками эпидермиса и соответствующими им сосочками дермы. Эта зона представляет особый интерес, так как причастна не только к тесной структурной связи двух тканей, но и к барьерной функции, также через эту зону осуществляются обменные процессы между эпидерми-

сом и дермой. Пограничная зона представлена собственно базальной мембраной (*lamina densa*), состоящей преимущественно из коллагена IV типа. Со стороны эпидермиса — это плазмолеммы, часть цитоплазмы базальных клеток и полудесмосомы — плазмолеммы базальных клеток, которые внедряются в дерму. Со стороны дермы — это субэпидермальное аргирофильное сплетение (*lamina lucida*), пучки которого внедряются в базальную мембрану и ряда неколлагеновых гликопротеинов — ламинина, возможно, фибронектина, разделяющих плазмолеммы базальных клеток и базальную мембрану.

Дерма [собственно кожа (corium dermis)] — производное мезодермы, состоит из волокнистой соединительной ткани. Волокна переплетаются между собой в различном направлении, образуют густую сеть, в которой залегают сосуды, нервы, мышцы, железы, волосяные фолликулы и матрикс ногтевых пластинок. В дерме секретируются коллаген, эластин, ретикулин, ядра гликопротеидов и гликозоаминогликанов.

Дерму образуют два слоя:

- 1. Сосочковый (stratum papillare).
- 2. Сетчатый (stratum reticulare).

Сосочковый слой состоит из рыхлой соединительной ткани; свое название он получил потому, что несет на своей поверхности сосочки (papillae), выдающиеся в эпидермис. Между сосочками располагаются межсосочковые бороздки. В сосочках залегают нервные окончания (terminationes nervorum), кровеносные и лимфатические капилляры, которые затем соединяются с подсосочковыми сетями, а те, в свою очередь, с дермальными кровеносными, лимфатическими и нервными сплетениями.

Кожа богата эластическими и коллагеновыми волокнами, они направляются от фасций в подкожную клетчатку и в собственно кожу. Эластические волокна образуют под сосочками сплетение, обусловливая эластичность кожи, находясь преимущественно в сетчатом слое, они оплетают коллагеновые волокна и окружают сетью также сальные железы и волосяные фолликулы. Эластическая ткань кожи больше развита в местах, подвергающихся давлению (ладони, подошвы, кожа в области суставов).

Основную часть дермы составляет коллаген нескольких типов. В дерме взрослого человека преобладает коллаген I (80–90%)

и III типа (8—12%). За счет коллагена I типа образуются коллагеновые волокна. Коллаген V типа в виде нежных гранул и филамент располагается преимущественно в сосочковом слое дермы и вокруг базальных мембран сосудов, нервов и придатков кожи, а также в пограничной эпидермально-дермальной зоне. IV тип коллагена составляет основную часть базальных мембран эпидермально-дермальной зоны, сосудов и придатков кожи. VII тип коллагена формирует прикрепляющие фибриллы сосочкового слоя дермы. VI тип пронизывает всю дерму в виде нежной сети. В сосочковом слое дермы коллагеновые волокна расположены вертикально, не перекрещиваясь; в сетчатом, переплетаясь в определенном порядке, они идут параллельно поверхности кожи и утолщаются в направлении подкожной жировой клетчатки.

В собственно коже находится также гладкомышечная ткань. Гладкие мышечные волокна направляются главным образом к волосяным сумкам (влагалищам) и сальным железам в качестве мышц, поднимающих волосы (*mm. arrectores pilorum*). Сокращение мышечных волокон обусловливает появление «гусиной кожи» (*cutis anserina*) и выделение секрета кожных желез. Волосы ресниц, бровей, ноздрей мышц не имеют. В коже мошонки и вокруг соска молочной железы также нет гладких мышечных клеток. Эти клетки не связаны с волосяными сумками, а образуют мышечный слой, залегающий в сосочковом слое и частично в подкожной клетчатке.

Основное аморфное вещество дермы, благодаря своим вяжущим свойствам, удерживает волокнистые и клеточные структуры дермы. Оно представляет собой многокомпонентную систему, содержащую вещества, поступающие из крови, и продукты метаболизма клеток эпидермиса и дермы, при этом основные компоненты — это протеогликаны и гликозаминогликаны, среди которых основное значение имеют хондроитинсульфат и хондроитин-6-сульфат, непосредственно участвующие в репаративных процессах. Кроме того, дерма содержит фибронектин, ламинин, тромбоспондин, витронектин и тенасцин.

Клетки дермы представлены фибробластами, макрофагами, тучными клетками, в меньшей степени лимфоцитами, благодаря функционированию последних кожа представляет собой иммунокомпетентный орган (рис. 1.7). Также, помимо лимфоидной

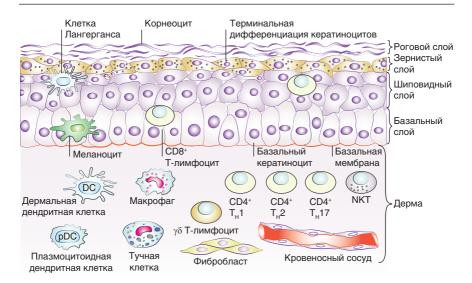


Рис. 1.7. Иммунная система кожи

ткани, инкапсулированной в лимфатических узлах и селезенке, в организме имеется неинкапсулированная лимфоидная ткань, ассоциированная с кожей и слизистыми оболочками, в пределах которой реализуются как общие для иммунной системы, так и собственные уникальные механизмы.

Дерма в своих глубоких слоях без резкой границы переходит в подкожную основу — гиподерму (*tela subcutanea*), содержащую большое количество жировых клеток — адипоцитов. Последние группируются в жировые дольки. Крупные скопления этих долек образуют жировые отложения (*panniculi adiposi*). Пучки соединительной ткани, окружающие дольки, носят название «удерживатели кожи» (*retinacula cutis*). В них проходят сосуды и нервы.

Распределение и толщина гиподермы зависит от наследственности, половых гормонов и условий жизни человека. Функции гиподермы: накопление и запас питательных веществ, жирорастворимых витаминов, энергетических субстанций и воды; участвует в синтезе женских половых гормонов, терморегуляции и механической защите. Наличие рыхлой соединительной ткани в подкожной основе и степень соединения ее с подлежащими тканями обусловливают подвижность кожи и возможность обра-

зования складок. В области ладони и подошвы кожа малоподвижна, так как соединена с подлежащими апоневрозами плотными соединительнотканными тяжами, между которыми образуются ячейки, заполненные жировыми дольками.

Жировая ткань может откладываться в большом количестве в области молочных желез, передней брюшной стенки и бедер. В области щеки скопление подкожного жира имеет вид заключенного в соединительнотканную капсулу жирового тела щеки (corpus adiposum buccae). В некоторых участках кожи жир постоянно отсутствует: например, в области век, ушных раковин, сосков молочных желез, кожи мошонки и полового члена.

Поверхность кожи неровная, так как имеет множество складок — борозд кожи (sulci cutis), и возвышений — гребешков кожи (cristae cutis). Складки кожи подразделяются на постоянные и непостоянные. К числу постоянных крупных складок кожи относятся веки, ушные раковины, крайняя плоть, половые губы и др. Складки имеются также в области суставов: например, локтевая складка, паховая складка и др. Непостоянные складки кожи образуются в местах слабого развития подкожной основы при сокращении мышц: например, поперечные складки на коже лба, вертикальная складка между бровями, в области век и др. Поверхность кожи несет на себе ряд борозд: носогубную, подбородочно-губную, локтевые борозды и др. Поверхность эпидермиса покрыта большим количеством тонких бороздок, располагающихся в различных направлениях и образующих поля ромбической и треугольной формы, на которых различают гребешки кожи, отделенные бороздками. В гребешках сосочки собственно кожи располагаются парными параллельными рядами. На вершинах гребешков открываются отверстия протоков потовых желез.

Кровеносная система кожи представлена двумя артериальными сплетениями (крупнопетлистое — глубокое, расположенное на границе дермы и подкожной клетчатки, и мелкопетлистое — поверхностное, на границе сосочкового и ретикулярного слоев дермы), капиллярной сетью и тремя венозными сплетениями (первое — под сосочками, второе — в нижней половине дермы, третье — в подкожной жировой клетчатке) (рис. 1.8).

Имеются особенности венозного сплетения на коже лица, где под сосочками находятся крупные венозные сосуды, лежащие

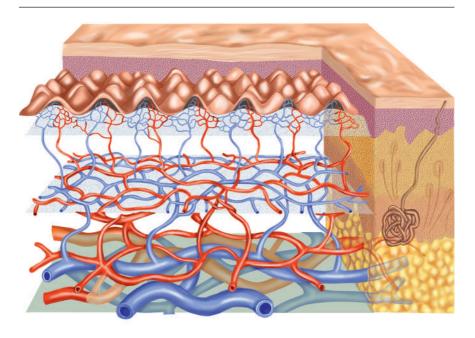


Рис. 1.8. Кровеносная и лимфатическая система кожи

горизонтально и образующиеся из нескольких посткапиллярных венул, которые, минуя поверхностную венозную сеть, под прямым углом впадают в глубокую дермальную сеть. Также на кончиках пальцев, в ногтевом ложе, в коже выступающих отделов лица (нос, губы, ушные раковины) имеются особые структуры — гломусы, представляющие собой соединение (без участия капилляров) между артериолой и венулой. Поверхностное сосудистое сплетение представляет собой микроциркуляторное русло, приспособленное для осуществления гистогематического обмена. Эта система обеспечивает питание дермы, эпидермиса и придатков кожи. Глубокое сосудистое сплетение выполняет также функцию теплообменника. Эпителиальный слой кожи лишен кровеносных сосудов. Лимфатические капилляры кожи имеются только в дерме, где они образуют две сети — поверхностную и глубокую.

Кожа как орган чувств снабжена необычайно богатым нервным аппаратом. Иннервация кожи представлена цереброспинальными (чувствительными и двигательными) волокнами,

а также вегетативными волокнами — сосудистыми и секреторными. Чувствительные нервные волокна находятся в виде свободных или инкапсулированных нервных окончаний. Кожные нервы берут свое начало от основного сплетения, заложенного в глубоких отделах подкожной жировой клетчатки. Поднимаясь через толщу дермы, они отдают многочисленные веточки, иннервирующие сальные и потовые железы, волосяные фолликулы и сосуды. В нижнем отделе сосочкового слоя они образуют сплетение, от которого отходят отдельные веточки, проникающие в сосочки дермы и эпидермис. В коже человека встречаются инкапсулированные нервные окончания (тельца Мейснера, тельца Фатера—Пачини, колбы Краузе, тельца Руффини), состоящие

Рис. 1.9. Нервный аппарат кожи

из соединительнотканной капсулы, к которой подходят безмиелиновые нервные волокна. Эти окончания в основном концентрируются на участках повышенной чувствительности кожи. Свободные и инкапсулированные нервные окончания функционируют в коже как рецепторы, воспринимающие прикосновение, боль, температуру, зуд и механическое воздействие (рис. 1.9).

Кожа обладает развитым железистым аппаратом в виде многочисленных потовых и сальных желез (рис. 1.10). Потовые железы

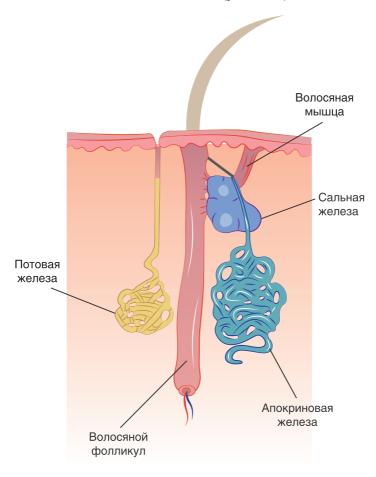


Рис. 1.10. Железистый аппарат кожи

(glandulae sudoriparae) делятся на эккринные железы, функционирующие с рождения, и апокринные железы, секреторная деятельность которых начинается в период полового созревания; по строению они относятся к простым трубчатым железам. Сальные железы (glandulae sebaceae) расположены по всей поверхности кожи, за исключением ладоней и подошв. Особенно много их в коже лица, груди, спины. Большинство желез топографически связано с длинными и пушковыми волосами, в устья которых они и открываются.

1.2. МЕХАНИЗМЫ ОБРАЗОВАНИЯ РУБЦОВ И ОСОБЕННОСТИ КЛИНИЧЕСКОЙ КАРТИНЫ

Классификация в соответствии с Международной классификацией болезней 10-го пересмотра.

Атрофические поражения кожи (L90):

- L90.5 Рубцовые состояния и фиброз кожи.
- L90.6 Атрофические полосы (*striae*). Гипертрофические изменения кожи (L91):
- L91.0 Келоидный рубец.
- L91.8 Другие гипертрофические изменения кожи.
- L91.9 Гипертрофическое изменение кожи неуточненное.

Рубец — вторичный морфологический элемент, формирующийся в виде компенсаторной реакции после нарушения целостности поверхности кожи в результате травмы или глубокого воспалительного процесса, также для атрофических рубцов триггером может быть гормональный фон. Степень рубцевания может значительно варьировать от едва заметных нормотрофических рубцов до выраженных, вызывающих изменение внешности и значительно снижающих качество жизни пациентов.

Заживление любой раны — это динамический процесс, протекающий с временным перекрыванием следующих стадий: воспаление, формирование грануляционной ткани и перестройка кожи. В ответ на повреждение вступают в силу нейрогуморальные механизмы, имеющие цель восстановление гомеостаза организма через закрытие раневого дефекта. И чем быстрее происходит восстановление целостности кожных покровов, тем больше вероятность формирования нормотрофического рубца либо без

рубцового заживления. Скорость репаративных процессов в коже зависит от площади и глубины повреждений, состояния реактивности макроорганизма, наличия сопутствующей соматической патологии, состояния микроциркуляторного русла, инфицированности раны, рациональности лечения.

Неглубокие раны, когда повреждены лишь эпидермис и верхние слои дермы, эпителизируются в основном за счет сохранившихся базальных клеток, придатков кожи и краевого эпидермиса, что приводит к полному и быстрому восстановлению без формирования рубца либо с образованием нормотрофического «нежного» рубца, однако может отмечаться гипер- или гипопигментация. Глубокие раны эпителизируются с формированием рубца. При больших ранах важным является натяжение кожи (табл. 1.1, 1.2).

Таблица 1.1 Репаративные процессы в зависимости от глубины повреждения

Глубина повреждения	Источники регенерации	Исход
До базальной мем- браны и верхушек сосочков	За счет усиленной про- лиферации сохранившихся базальных кератиноцитов	Без рубцов. Гиперпигментация (гипопиг- ментация)
Глубже верхушек сосочков, повреждение базальной мембраны и капилляров в поверхностной сосудистой сети	За счет сохранившихся фрагментов базальной мембраны с базальными кератиноцитами, краевых кератиноцитов, эпителиальных клеток волосяного фолликула и эпителия протоков желез	Как правило, без руб- цов. Гиперпигментация (гипопигментация). Риски гиперпигментации повы- шены у лиц IV–V фототипов по Фицпатрику
Повреждение ниже базальной мембраны с повреждением поверхностных слоев дермы	За счет краевых кератиноцитов, эпителиальных клеток волосяного фолликула и эпителия протоков желез	Депигментация. Атрофический рубец
сосочкового и сетчато- го слоя дермы тов, эпителиальных клеток гический рубец. При высо реактивности кожи, хорог		Всегда формируется патоло- гический рубец. При высокой реактивности кожи, хорошем кровоснабжении (дети) воз- можен исход без рубцов
Глубокая резаная или колотая рана	Эпителизация проходит очень быстро за счет слипания краев раны	Как правило, нормотрофический рубец

Таблица 1.2

Глубина повреждения в зависимости от вида травмы

Глубина повреждения	Вид травмы
До базальной мембраны и верху- шек сосочков	Срединные пилинги, пескоструйная дерма- бразия, абляция эрбиевым лазером, ссадины, ожоги I–II степени
Глубже верхушек сосочков, повреждение базальной мембраны и капилляров в поверхностной сосудистой сети	Дермабразия фрезой Шумана, абляция CO_2 лазером, глубокий пилинг, ожог IIIA степени, глубокий воспалительный процесс
Повреждение ниже базальной мембраны	Операционная рана, ожог IIIA/В степени, затяжной глубокий воспалительный процесс, неадекватная терапия

Для понимания патогенеза формирования рубца необходимо рассмотреть физиологический процесс ранозаживления (рис. 1.11).

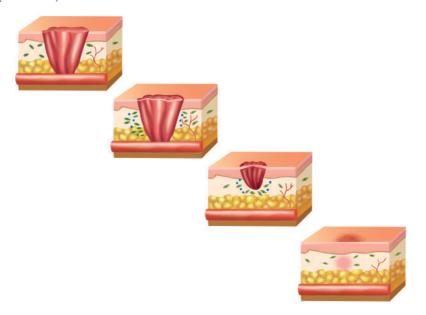


Рис. 1.11. Процесс заживления раны

При заживлении вначале происходит образование гематомы, что обеспечивает прекращение кровотечения и препятствует проникновению патогенов, при этом тромб представляет собой своего рода матрикс, в который мигрируют клетки. В дальнейшем при разрушении тромбоцитов выделяется множество факторов роста, которые привлекают в очаг клетки воспаления, происходит фагоцитоз микроорганизмов и погибших клеток. Таким образом, фаза воспаления сопровождается процессами альтерации, экссудации, некролиза. По окончании острой фазы в очаг мигрируют фибробласты. Вторая фаза пролиферации — начинается с формирования грануляционной ткани за счет пролиферации подлежащих к ране фибробластов, краевых кератиноцитов, активируются синтез внеклеточного матрикса и неоангиогенез. По мере формирования грануляций увеличивается апоптоз. В свежей грануляционной ткани преобладает коллаген III типа (коллагена I типа значительно меньше). Под действием фактора роста эндотелия, трансформирующего фактора роста-β1, ангиотропина, тромбоспондина во внеклеточном матриксе формируются новые сосуды. Миофибробласты способствуют сближению краев (основные белки актин и десмин), что уменьшает количество гранулематозной ткани. Мигрирующие кератиноциты активируют тканевой фактор плазминогена и урокиназу и повышают количество рецепторов к урокиназе, что, в свою очередь, способствует фибринолизу — важному этапу, необходимому для миграции кератиноцитов.

На стадии перестройки (ремоделирования) происходит эпителизация, а излишек коллагена и временный матрикс удаляются тканевыми ферментами, таким образом возникает равновесие между процессами разрушения временного матрикса и синтеза коллагена. С одной стороны, фибробласты синтезируют сократительные белки и внеклеточный матрикс, с другой — фибробласты, тучные клетки, клетки эндотелия и макрофаги выделяют ряд ферментов (матриксные металлопротеиназы), необходимых для перестройки. Равновесие между этими протеиназами и их тканевыми ингибиторами играет важную роль

в процессе восстановления поврежденных тканей. Интерфероны подавляют синтез фибробластами коллагена и фибронектина. Перестройка сопровождается преобладающим синтезом коллагена I типа, образованием поперечных сшивок. Процесс продолжается от 6 до 12 мес, при келоидных рубцах может растягиваться на голы.

ФОРМИРОВАНИЕ ГИПЕРТРОФИЧЕСКИХ РУБЦОВ: КЛИНИЧЕСКАЯ КАРТИНА

Патогенез формирования патологического рубца отражает степень равновесия между процессами образования коллагена и разрушения временного матрикса. Гипертрофические рубцы часто объединяют в общую с келоидными группу патологических рубцов в связи с тем, что оба вида отличаются избыточным образованием фиброзной ткани.

Затяжная воспалительная реакция, нарушение микроциркуляции и гипоксия способствуют накоплению в ране продуктов распада, вызывающих активизацию фибробластов, их синтетической и пролиферативной активности. Гипертрофические рубцы образуются ввиду чрезмерной продукции коллагена и недостаточной активности коллагеназы. Формирование рубца при этом в большей степени зависит от генетически детерминированного процесса репарации и отличается наличием большого числа юных и функционально активных фибробластов, миофибробластов, преобладанием толстых коллагеновых пучков и практически отсутствием эластических волокон (табл. 1.3).

Гистологически для гипертрофического рубца характерно наличие незрелой соединительной ткани сравнительно однородной структуры с признаками морфологической зрелости; очаги молодой соединительной ткани располагаются на глубине 0,05-0,12 см и в толще рубца не встречаются. Избыточный рост рубца обусловлен повышением биосинтезирующей активности фибробластов, среди которых преобладают зрелые формы; юные и гигантские фибробласты не встре-

Таблица 1.3 Факторы риска формирования патологических рубцов

Фактор риска	Возможные механизмы
Генетическая предрасположен- ность	Генетически детерминированное нарушение регуляции репаративных процессов (преимущественно 1-й и 3-й фазы)
Инфицирование раны	Заживление вторичным натяжением
Соматическая патология (сахарный диабет, хронические заболевания сердечно-сосудистой системы, дыхательной системы)	Затяжное течение воспалительной фазы регенерации. Нарушение микроциркуляции. Нарушение репаративных процессов
Повышение уровня минера- локортикоидов, андрогенов, соматотропного гормона, анабо- лических стероидов, гормонов щитовидной железы	Приводит к увеличению митотической и пролиферативной активности фибробластов
Недостаток эстрогенов	Способствует хронизации воспаления за счет ослабления репаративных процессов и коллагенообразования
Стресс (иммунодефицитные состояния)	Снижение фагоцитарной функции макрофагов. Уменьшение выработки иммуноглобулинов. Накопление в зоне травмы продуктов распада, свободных радикалов, инфекционных агентов. Ухудшение микроциркуляции, гипоксия
Глубокие травмы большой площади, термические и химические ожоги	Полная или частичная деструкция придатков кожи и, как следствие, отсутствие базальных клеток. Тканевая гипоксия и ишемия
Техника операционного шва	Растяжение формирующегося рубца в продольном направлении способствует гипертрофическому рубцеванию, а в поперечном — его расширению
Рана, расположенная перпендикулярно к кожным линиям Лангера	Коллагеновые волокна не фиксируются вместе со швом. Чрезмерное натяжение краев раны не компенсируется растяжением окружающей кожи. Большее повреждение кровеносных сосудов
Анатомическая зона: передненижняя и заднебоковые поверхности шеи, передняя сторона грудной клетки, верхняя часть спины и плечевая область	В местах, где кожа сравнительно толстая и, соответственно, хуже растяжима

чаются. При этом наряду с интенсивным синтезом коллагена происходит его созревание. Основой поддержания активного роста рубцовой ткани служит ее обильная васкуляризация (рис. 1.12).

Рис. 1.12, а. Гипертрофические рубцы (посттравматические)